ROI: Super Air Knife vs. Drilled Pipe

Super Air Knife Drilled Pipe

Return on Investment, or ROI, is the ratio of profit over total investment.  Many people use it to check investment stocks, financial markets, capital equipment, etc.  It is a quantitative way in determining the validity for an investment or project.   You can use this ROI value to give a measurable rate in looking at your investment, no matter how big or small.  In this blog, I will compare the ROI between an EXAIR Super Air Knife to a home-made drilled pipe.  Let’s start by looking at Equation 1 to calculate the Return on Investment.  For a positive ROI value, the project will pay for itself in less than one year.  Any negative values would represent a high-risk investment. 

Equation 1:  ROI = (Total Annual Savings – Total Project Cost) / Total Project Cost * 100

The Total Project Cost is the cost of the product with the labor to install.  In our example, we will use a 36” (914mm) blow-off device to cover the width of a conveyor.  One device will be an inexpensive drilled pipe and the other will be a high-efficiency EXAIR Super Air Knife.  The drilled pipe had (72) 1/16” (1.6mm) diameter holes spaced ½” (13mm) apart.  EXAIR manufactures the model 110036 36” Aluminum Super Air Knife with a .002” (.05mm) shim along the entire length.  The model 110036 has a retail price of $802.00 each.  The cost of the home-made drilled pipe was around $70.00 for material and labor.  What a difference in price!  It seems like the ROI should be in the negative, but is it?

Let’s continue on with the Return on Investment.  The amount of time required to install the Super Air Knife across the conveyor only took a maintenance staff about one hour to mount.  The labor rate that I will use in this example is $80.00 per hour (you can change this to your current labor rate).  The labor cost to install the knife is $80.00.   The Total Project Cost can be calculated as follows: $802 + $80.00 = $882.00.  The next part of the equation, Total Annual Savings, is a bit more in-depth, but the calculation is below.

To calculate the Total Annual Savings, the amount of compressed air used by the drilled pipe is around 261 SCFM (7,389 SLPM) at 60 PSIG (4.1 Bar).  The model 110036 Super Air Knife has an air consumption of 82.8 SCFM (2,344 SLPM) at 60 PSIG (4.1 Bar).  With an electrical rate of $0.08 per Kilowatt-hour, the electrical cost is near $0.25 per 1000 standard cubic feet or compressed air, or $0.25/1000SCF.  To calculate an annual savings, let’s use a blow-off operation of 8 hours/day for 250 days a year.   Replacing the drilled pipe with the model 110036 Super Air Knife, it will save you (261 SCFM – 82.8 SCFM) = 178.2 SCFM of compressed air.  To put this into a monetary value, the annual savings will be 178.2 SCFM *$0.25/1000SCF * 60 Min/hr * 8hr/day * 250 day/yr = $5,346.00 per year.

With the Total Annual Cost and the Project Cost known, we can insert these values into Equation 1 to calculate the ROI:

ROI = (Total annual savings – Total Project Cost) / Project Cost * 100

ROI = ($5,346.00 – $882.00) / $882.00 * 100

ROI = 506%

With a percentage value that high, we are looking at a payback period of only 40 days.  You may look at the initial cost and be discouraged; but in a little over a month, the model 110036 will have paid for itself.  And after using it for one year, it will save your company $5,346.00. 

In my experience, a loud blowing noise from your equipment is generally coming from an inefficient and safety-concerned product.  With these “cheap” ways to blow compressed air, it will cost your company a lot of money to use as shown in the example above.  EXAIR has an Air Savings Calculator on our website to calculate the savings by replacing your inefficient blow-off devices. And, if you would like to team up with EXAIR to find ways to increase savings, improve productivity, and promote safety, you can contact an Application Engineer.  We can help you get started by defining your Return on Investment with EXAIR products.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

How to Save Money on Compressed Air

Compressed air can be one of the more expensive utilities to use in a facility, but a compressed air system is full of simple opportunities to increase efficiency and minimize the cost. Much like how you can take multiple steps to save electricity at your house there a few simple steps you can take to save your compressed air. These steps include finding and repairing leaks, compressor maintenance, minimizing pressure at the point of use, and turning the compressed air off when not in use. Implementing these steps and using the right tools to achieve them can lead to significant dollar savings – in fact our website case studies, other blog articles and catalog are filled with example after example of air (and dollar) savings success! And let’s be honest here, who doesn’t like saving money.

First off is finding your leaks. Leaks are one of the major wastes of compressed air in a system that could happen. Leaks in a compressed air system can account for wasting 20-30% of a compressors output. These leaks can commonly be found in pipe joints, devices that use the compressed air, quick connect fittings, and storage tanks. All of this compounds to wasting air much like a leaky faucet wastes water – little by little it grows until it simply needs to be addressed. One of the ways to help find leaks in your system is EXAIR’s affordable Ultrasonic Leak Detector. This leak detector uses ultrasonic waves to detect where costly leaks can be found so that they can be patched or fixed.

EXAIR Ultrasonic Leak Detector

Choose efficient end-use products. Engineered air knives, air amplifiers, air nozzles and safety air guns can dramatically outperform (use less air) than commercial air nozzles and in-house solutions such as drilled pipes, open air lines and other creative “fixes”. We have seen some very nice in-house solutions from customers who have put in some significant time and effort, but they all have one thing in common – they use more air than any of EXAIR’s engineered solutions.

Minimizing your pressure can also save you money by limiting the amount of compressed air that is being used. Pressure and volume go hand and hand, the higher the pressure the higher the volume of air and vice versa. By minimizing the pressure that you are using you are also minimizing the amount of air that is being used which means savings. Each CFM used can be associated with a certain price value so the less you use the more you save. You also cut down on the amount of work the compressor has to do and how often the compressor has to cycle. Pressure can be minimized using one of EXAIR’s Pressure Regulators to cut down on the amount of air being used.

EXAIR’s Pressure Regulators come in 4 different sizes

Turn off the compressed air when it is not in use. Just like how you wouldn’t leave the faucet running or lights on in a room that is not being used, don’t leave your compressed air running (insert bad dad joke). Constantly using compressed air even when not in use will cause the compressor to cycle more often wasting money. Each CFM has a price to it so don’t waste CFM’s blowing it back into the air and doing nothing. This can simply be done by adding one of EXAIR’s ball valve or solenoid valves to turn off when you are done using it. Also, if you want to take it another step farther you can look at using one of EXAIR’s Electronic Flow Controllers (EFC). The EFC uses a photo eye attached to a timer that will open a solenoid valve for a set amount of time when it detects an object within 3’ of the photo eye. This will turn the air on only when your product is in the air path and turn it off during any spaces in between.

EXAIR’s EFC in use

Compressor maintenance is another important step to minimizing the cost of compressed air. Neglected air compressors can cause a lot of issues ranging from expensive repairs to a decreases in efficiency. Wear and tear placed on the motor of an air compressor can cause the compressor to produce less compressed air (SCFM) at the same power consumption. This means you are paying the same amount of money and getting less out of it. Making sure that your compressor or any machine is always running at its optimal performance and should always be a priority for any facility.

There are many different ways to save on compressed air, these are just a few of them. Reducing air use will save money and reduce the demand on your compressor which in turn can prolong the life of your air compressor. If you have questions about how to save on compressed air or any of our engineered Intelligent Compressed Air® Products, feel free to contact EXAIR or any Application Engineer.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

EXAIR’s Return on Investment For One Engineered Air Nozzle is Amazing!

Return on Investment (ROI) is a measure of the gain (preferably) or loss generated relative to the amount of money that was invested.  ROI is typically expressed as a percentage and is generally used for financial decisions, examining the profitability of a company, or comparing different investments.  It can also be used to evaluate a project or process improvement to decide whether spending money on a project makes sense.  The formula is shown below-

ROI
ROI Calculation
  • A negative ROI says the project would result in an overall loss of money
  • An ROI at zero is neither a loss or gain scenario
  • A positive ROI is a beneficial result, and the larger the value the greater the gain
1100group
Our catalog publishes most products’ performance and specification data for a compressed air supply pressure of 80psig.

Example – installing a Super Air Nozzles (14 SCFM compressed air consumption) in place of 1/4″ open pipe (33 SCFM of air consumption consumption) .  Using the Cost Savings Calculator on the EXAIR website, model 1100 nozzle will save $1,710 in energy costs. The model 1100 nozzle costs $42, assuming a $5 compression fitting and $45 in labor to install, the result is a Cost of Investment of $92.00. The ROI calculation for Year one is-

ROI2

ROI = 1,759% – a very large and positive value.  Payback time is only 13 working days!

If you have questions regarding ROI and need help in determining the gain and cost from invest values for a project that includes an EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Six Steps to Optimization, Step 4 – Turn Off Your Compressed Air When Not in Use

Step 4 of the Six Steps To Optimizing Your Compressed Air System is ‘Turn off the compressed air when it isn’t in use.’  Click on the link above for a good summary of the all the steps.

6 Steps from Catalog

Two basic methods to set up a compressed air operation for turning off is the ball valve and the solenoid valve. Of the two, the simplest is the ball valve. It is a quarter turn, manually operated valve that stops the flow of the compressed air when the handle is rotated 90°. It is best for operations where the compressed air is needed for a long duration, and shut off is infrequent, such as at the end of the shift.

manual_valves (2)
Manual Ball Valves, from 1/4 NPT to 1-1/4 NPT

The solenoid valve offers more flexibility. A solenoid valve is an electro-mechanical valve that uses electric current to produce a magnetic field which moves a mechanism to control the flow of air. A solenoid can be wired to simple push button station, for turning the air flow on and off – similar to the manual valve in that relies on a person to remember to turn the air off when not needed.

wa_solvalv
A Wide Array of Solenoid Valve Offerings for Various Flows and Voltage Requirements

Another way to use a solenoid valve is to wire it in conjunction with a PLC or machine control system. Through simple programming, the solenoid can be set to turn on/off whenever certain parameters are met. An example would be to energize the solenoid to supply an air knife when a conveyor is running to blow off parts when they pass under. When the conveyor is stopped, the solenoid would close and the air would stop blowing.

The EXAIR EFC (Electronic Flow Control) is a stand alone solenoid control system. The EFC combines a photoelectric sensor with a timer control that turns the air on and off based on the presence (or lack of presence) of an object in front of the sensor. There are 8 programmable on/off modes for different process requirements. The use of the EFC provides the highest level of compressed air usage control. The air is turned on only when an object is present and turned off when the object has passed by.

efcapp
EFC Used To Control Bin Blow Off Operation

By turning off the air when not needed, whether by a manual ball valve, a solenoid valve integrated into the PLC machine control or the EXAIR EFC, compressed air usage will be minimized and operation costs reduced.

If you have questions about the EFC, solenoid valves, ball valves or any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB