OSHA Safety, Efficiency, and Flexibility from Engineered Compressed Air Nozzles

Throughout my years here at EXAIR as well as my years in the metal cutting industry, one of the most common quick fixes I see in production environments for compressed air blowoffs in a process is an open copper pipe that is contorted into a position, pinched at the end, and more often than not kinked from repositioning. I call this a quick fix because it does blow air, more often than not it will get production up and running, but it does not meet or exceed OSHA standards for safety and is an inefficient use of compressed air. [OSHA Standards 29 CFR 1910.242(b) and 29 CFR 1910.95(a)]

EXAIR Super Air Nozzles that are easy replacements for 1/8″ and 1/4″ Copper pipe.

The first engineered solution I could offer to prevent any costly OSHA fines and to lower the ambient noise level caused by these blowoffs is to implement an EXAIR Engineered Air Nozzle. We offer a wide variety of nozzles ranging from a 4mm thread up to a 1-1/4″ NPT thread. With this wide range comes a wide variety of forces and flows as well.

Today, I would like to focus on the common sizes of copper blowoffs which are 1/8″ and 1/4″. To simply adapt a nozzle to copper line a compression fitting can be easily sourced, often from EXAIR, and convert the copper tubing in place to an NPT threaded outlet for easy installation of an EXAIR nozzle. More often than not a compression fitting is how the copper tubing is tied into the machine’s compressed air system.

We have a total of 37 engineered air nozzles from stock that will easily fit a compression fitting which goes to a 1/8″ NPT or 1/4″ NPT thread. Several of these are also adjustable through a gap adjustment or a patented shim adjustment to vary the force and flow out of the nozzle from a forceful blast to a gentle breeze in order to me your application needs. What if you want to eliminate the copper line and compressions fittings?

EXAIR offers a replacement option for the ever-common copper tube that is more robust and does not require a tool to be properly repositioned. We currently offer twenty-four different models of our Stay Set Hoses that can be easily connected to any of the nozzles mentioned above. The lengths that are available are 6″ (152mm), 12″ (305mm), 18″ (457mm), 24″ (610mm), 30″ (762mm) and 36″ (914mm).

These lengths are available with two separate connection options. 1/4″ MNPT x 1/4″ MNPT or 1/4″ MNPT x 1/8″ FNPT. The Stay Set Hoses can easily be bent by hand into position for a precise placement of the air pattern from the engineered nozzle attached to it. This permits operators a tool free adjustment for fast and reliable location to keep production up and running. They can also be paired with Magnetic Bases.

EXAIR Magnetic Bases are available in single outlet or dual outlet configurations. Both include a 100 lb. pull magnet that will hold tight to any ferrous metal surface for secure mounting, as well as a quick 1/4 turn miniature valve on each outlet. This permits independent customization of the force our of each output for the dual outlet mag base. Each magnetic base offers a 1/4″ FNPT inlet port and outlet port. We offer these with any of combination of the Stay Set Hoses mentioned above as well as any of the Super Air Nozzles mentioned above.

Mag Bases come with one or two outlets. Stay Set Hoses come in lengths from 6″ to 36″.

The Super Air Nozzles, Stay Set Hoses, and Magnetic Bases can be easily combined before they ship to your facility to make a complete blowoff station that is easily installed and adjusted to fit any of the needs your process may have for a point of use blowoff. If you want help determining how much compressed air you would save by replacing the open pipe blowoffs with an engineered solution like a Stay Set Magnetic Base Blowoff System please contact myself or any Application Engineer here at EXAIR.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

6 Steps to Optimizing Your Compressed Air System: STEP 4 – Turn It Off!

If you’re a follower of the EXAIR Blog, you’re probably well aware that compressed air is the most expensive utility in an industrial environment. The average cost to generate 1000 Standard Cubic Feet of compressed air is $0.25. If you’re familiar with how much air you use on a daily basis, you’ll understand just how quickly that adds up.

To make matters worse, many compressed air systems waste significant amounts of compressed air just through leaks. According to the Compressed Air Challenge, a typical plant that has not been well maintained will likely have a leak rate of approximately 20%!! Good luck explaining to your finance department that you’re carelessly wasting 20% of the most expensive utility.

SBMart_pipe_800x

6 Steps from Catalog

The best way to save energy associated with the costs of generating compressed air is pretty straightforward and simple: TURN IT OFF! Placing valves throughout your distribution system allows you to isolate areas of the facility that may not need a supply of compressed air continuously.

Even a well-maintained system is going to have a leakage rate around 10%, it’s darn near impossible to absolutely eliminate ALL leaks. By having a valve that allows you to shut off the compressed air supply to isolated areas, you’re able to cut down on the potential places for leaks to occur.

You’re likely not running each and every machine continuously all day long, if that’s the case why not shut off the air supply to those that aren’t running? When operators go to lunch or take a break, have them turn off the valves to prevent any wasted air. The fact of the matter is that taking this one simple step can truly represent significant savings when done diligently.

You wouldn’t leave your house with all the lights and TV on, so why leave your compressed air system running when it’s not in use? Even if everyone’s left for the day, leaks in the system will cause the compressor to keep running to maintain system pressure.

Taking things one step further, EXAIR’s Electronic Flow Control (EFC) utilizes a solenoid controlled by photoelectric sensor that has the ability to shut off the compressed air when no part is present. If you’re blowing off parts that are traveling along a conveyor with space in between them, there’s no need to continuously blow air in between those parts. The EFC is able to be programmed to truly maximize your compressed air savings. The EFC is available in a wide range of different capacities, with models from 40-350 SCFM available from stock and systems controlling two solenoid valves for larger flowrates available as well.

newEFC2_559

It’s no different than turning off your house lights when you leave for work each day. Don’t get caught thinking compressed air is inexpensive “because air is free”. The costs to generate compressed air are no joke. Let’s all do our part to reduce energy consumption by shutting off compressed air when it isn’t necessary!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Engineered Compressed Air Nozzles and Utility Rebates

When EXAIR started to manufacture compressed air products, we created a culture in making high quality products that are safe, effective, and efficient.  Being leaders in this industry, we created a program, the Efficiency Lab, to compare blow-off devices with EXAIR products in noise levels, flow requirements, and force measurements.  With calibrated test equipment, we compare the data in a qualified report to share with our customers.  This information can be helpful to determine the total amount of air savings and safety improvements that EXAIR products can offer.

Flat SANs 1in
Zinc Aluminum models are suitable for general purpose blow off (left) and 316SS models are specified for food/pharma and high heat applications.

In conjunction with the Efficiency Lab, we created a Cost Savings Calculator.  It is a quick way to view payback periods and annual savings when using EXAIR products.  As an example, I used a 1” Flat Super Air Nozzle, model 1126, and compared it to a 1/8” open pipe.  (The reason behind the comparison is that the model 1126 can screw onto the end of the 1/8” NPT pipe.)  With an operation of 24 hours/day for 250 days a year, the amount of air used by an 1/8” open pipe is near 70 SCFM (1,981 SLPM) at 80 PSIG (5.5 Bar).  The model 1126 has an air consumption of 10.5 SCFM (297 SLPM) at 80 PSIG (5.5 Bar).  By putting the information in the Cost Savings Calculator, it determined that the ROI was in 2.1 days.  The annual savings was $5,355 USD per year.  Imagine if you replaced ten blow-off spots in your facility, the amount of money that could be saved.  Here is the worksheet below:

flat 1

The people that started to notice the savings were the utility companies that make electricity.  Depending on your location, electrical suppliers initiated a rebate program to use engineered nozzles in your facility.  Similar to other energy saving rebates, like LED light bulbs and high efficiency furnaces, the electrical providers notice a big savings when using EXAIR products.  If you qualify, the total cost to purchase and implement the EXAIR Super Air Nozzles are reduced.(Even if a rebate program has not been implemented in your area, the idea of saving energy and compressed air makes it very profitable and environmentally sound in changing over to EXAIR products).

To see if your utility offers rebates on compressed air optimizations, go to the DSIRE database. This database is easy to search and informative.

For Example, here in Ohio Duke Energy has a Prescriptive Incentive Program for its customers. The Prescriptive Incentive Program makes it easy for Duke Energy customers to receive an incentive for their natural gas and electric energy efficiency projects. Prescriptive Incentives are energy efficient measures paid per-unit, reimbursing the customer up to the total cost (including materials and labor) after the measures have been installed. See the image below for their incentives for using Engineered Nozzles;

capture.jpg
Ohio Duke Energy Prescriptive Incentive Program

https://www.duke-energy.com/business/products/smartsaver/industrial-equipment

To discuss your application and how an EXAIR Intelligent Compressed Air Product can help your process and save you money, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

 

About Air Compressors: Air Intake Best Practices

Take a second and think about where the air compressor is located within your facility.  It is more than likely not a major focal point displayed prominently in the floor layout. There is a better chance it is tucked away in a corner of the facility where operators seldom travel.  No matter the type of air compressor, it still has an intake where it pulls in the ambient air from around the compressor then sends it through some process and on the demand side of your compressed air system.  These intakes can easily be placed out of sight and out of mind especially in older facilities that were designed when compressors were loud and the piping layout kept them away from operators due to sound level restrictions.

Air Compressor
Antique Air Compressor (Not safe for use!)

That’s why your compressor manufacturer supplies a specific grade of air inlet/intake filter, and this is your first line of defense. If it’s dirty, your compressor is running harder, and costs you more to operate it.  If it’s damaged, you’re not only letting dirt into your system; you’re letting it foul & damage your compressor. It’s just like changing the air filter on your car, your car needs clean air to run correctly, so does your compressor and the entire demand side of your compressed air system.

According to the Compressed Air Challenge, as a compressor inlet filter becomes dirty, the pressure drop across the inlet increases, this is very similar to the point of use compressed air filters.  The inlet filter on the compressor is the only path the compressor has to pull in the air, when restricted the compressor can begin to starve for air very similar to if you only had a small straw to breath through and told to run a marathon.  A clogged inlet filter can give false symptoms to compressor technicians as well.

The effects can mimic inlet valve modulation which result in increased compression ratios. If we were to form an example based on a compressor with a positive displacement, if the filter pressure drop increases by 20″ H2O, a 5% reduction of the mass flow of air will be present without a reduction in the power being drawn by the compressor. This all leads to inefficiency which easily amounts to more than the cost to replace the depleted inlet air filter.

compressor
Compressed Air System

Where you place the filter is just as important as how often you replace it.  There are some tips to be used when mounting the inlet filter.

  1. The filter can be placed on the compressor, but the inlet pipe should be coming from an external area to the compressor room or even the building if possible. The inlet should be free from any contaminants as well.  Some examples that are easy to overlook are nearby condensate discharges, other system exhausts and precipitation.
  2. Depending on the type of compressor being used, a lower intake air temperature can increase the mass flow of air due to the air density.  A compressor that is lubricant injected is not susceptible to this due to the air mixing with the warmer lubricant before being compressed.

If you would like to discuss improving your compressed air efficiency or any of EXAIR’s engineered solutions, I would enjoy hearing from you…give me a call.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

Images Courtesy of  the Compressed Air Challenge and thomasjackson1345 Creative Commons.

Candy Producer Saves $4600 in Compressed Air with EXAIR’s EFC

A few months ago, I took a phone call from a manufacturing engineer who worked at a large candy production facility here in the United States. Extra chocolate was dripping out of the candy molds onto the conveyor belt below.  Within a few hours the belt was dirty enough they would have to stop the line and clean the residual chocolate off the belt. 

The best solution I found was a 72” 316 Stainless Steel Super Air Knife. It worked great when powered at 60 psig inlet pressure. The laminar flow of the Super Air Knife was perfectly suited for this application.  The knife was mounted between the mold and the belt to help solidify and blowoff the excess drips of chocolate. There was one drawback, the Super Air Knife was not needed to blow the belt continuously and the continuous demand was not desirable during peak production.

The simple solution for this was the EXAIR Electronic Flow Control, the EFC minimizes compressed air use by turning off the air when a sensor is triggered. Since there was a 4.5-minute time gap between each mold set this was a great solution. When the photoelectric eye saw a mold, it then told the solenoid valve to open and supply the knife with compressed air for 30 seconds while the mold was open and the excess chocolate would be dripping. See the Savings calculations below;

efcapp

Without using the EFC

(* Using $ 0.25 per 1000 SCFM used)

  • 72” Super Ion Air Knife = 165.6 SCFM @ 60 PSIG
  • 165.6 SCFM x 60 minutes x $ 0.25 / 1000 SCFM = $ 2.48 per hour
  • $ 2.48 per hour x 8 hours = $ 19.84 per 8-hour day
  • $ 19.84 x 5 days = $ 99.20 per work week
  • $ 99.20 per week x 52 weeks =$5,158.40 per work year without the EFC control

 

With the EFC installed (turning the compressed air off for 4 minutes 30 seconds with a 30 second on time = 6 minutes/hour compressed air usage)

  • 165.6 SCFM x 6 minute x $ 0.25 / 1000 SCFM = $ 0.25 per hour
  • $ 0.25 per hour x 8 hours = $ 2.00 per 8-hour day
  • $ 2.00 x 5 days = $ 10.00 per work week
  • $ 10.00 per week x 52 weeks = $520.00 per work year with the EFC control 

$ 5,158.40 per year (w/o EFC) – $ 520.00 per year (w/ EFC) = $4,638.40 projected savings per year by incorporating the EFC.

EFC287x250

This example illustrates, clearly, why choosing the EFC is a good idea. It has the ability to keep compressed air costs to a minimum and saves compressed air for use within other processes around the plant. With this type of compressed air savings, the unit would pay for itself in less than 3 months.

If you would like to see how we might be able to improve your process or provide a solution for valuable savings, please contact one of our Application Engineers.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

About Rotary Scroll Compressors

The Rotary Scroll compressor is a popular style compressor and is used primarily for air conditioning refrigerant systems.  Recently, since it is very efficient, quiet and reliable it has been adopted by industrial air compressor manufacturer’s to expand their product offering for their smaller, high-efficiency product line.

They operate on the principle of two intermeshing spirals or scrolls with one being stationary while the other rotates or orbits in relation to it.  They are mounted with 180° phase displacement between them which forms air pockets having different volumes.  Air enters through the inlet port located in the rotating/orbiting scroll which fills the chambers and as is moved along and compressed along the scroll surfaces.

scroll compressor finalSome of the key advantages of a Rotary Scroll Compressor are:

  • Pulsation free delivery due to the continuous flow from the suction port to the outlet port.
  • No metal to metal contact thereby eliminating the need for lubrication
  • Low noise levels
  • Fewer moving parts means less maintenance
  • Energy Efficient
  • Air cooled

The largest disadvantage is they are available in a limited range of sizes and the largest SCFM outputs are around 100 SCFM.

This is exactly where EXAIR shines, we offer 15 product lines of highly efficient & quiet point of use compressed air products and accessories to compliment their limited output volume of air.  All EXAIR products are designed to use compressed air efficiently and quietly, many of which reduce the demand on your air compressor which will help control utility costs and possibly delay the need to add additional compressed air capacity.

As an example, EXAIR’s Super Air Knives deliver exceptional efficiency by entraining ambient air at ratios of up to 40:1 and they are able to deliver an even laminar flow of air ranging from a gentle breeze to exceptionally hard-hitting force.

Super Air Knife
EXAIR’s Super Air Knife entrains ambient air at a 40:1 ratio!

EXAIR’s Super Air Amplifiers are able to entrain ambient air at ratio’s up to 25:1.  The model 120024 – 4″ Super Air Amplifier developes output volumes up to 2,190 SCFM while consuming only 29.2 SCFM of compressed air @ 80 PSI which can easily be operated on a 100 SCFM output compressor.

Super Air Amplifier
EXAIR Air Amplifiers use a small amount of compressed air to create a tremendous amount of air flow.

For your blow off needs EXAIR’s Super Air Nozzle lineup has an offering that will fit nearly any need or application you may have.  Nozzles are available in sizes from M4 x 0.5 to  1 1/4 NPT and forces that range from 2 ounces of force up to 23 Lbs at 12″ from the discharge.  We offer sixty two nozzles that could all be operated easily from the limited discharge or a rotary scroll compressor.

nozzlescascadeosha
Family of Nozzles

If you need to reduce your compressed air consumption or you are looking for expert advice on safe, quiet and efficient point of use compressed air products give us a call.  We would enjoy hearing from you!

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

 

“Go Green” in 2019 With EXAIR’s Super Air Nozzles & Jets!

If one of your New Year’s resolutions for 2019 is to help improve your impact on the environment, look no further than EXAIR’s Engineered Air Nozzles & Jets. By upgrading your blowoff, cooling, and drying operations to use one of our Super Air Nozzles or Jets you can save as much as 80% of your compressed air usage when compared with an inefficient solution.

open tubes
Example of a manifold of open pipes

An open copper pipe or tube, even if “flattened” as we’ll commonly see, wastes an excessive amount of compressed air. This wasted compressed air can create problems in the facility due to unnecessarily high energy costs and the pressure drop that can be experienced affecting other processes. In addition to simply using too much compressed air, an open pipe or tube will often produce sound levels in excess of 100 dBA. At these sound levels, according to OSHA, permanent hearing damage will occur in just 2 hours of exposure.

OSHA Chart

By simply replacing the open tubes and pipe with an EXAIR Super Air Nozzle, you can quickly reduce air consumption AND reduce the sound level. Sound level isn’t the only thing an OSHA inspector is going to be concerned about regarding an open pipe blowoff, in addition OSHA 1910.242(b) states that a compressed air nozzle used for blowoff or cleaning purposes cannot be dead-ended when using with pressures in excess of 30 psig. I don’t know if you’ve ever tried to use an air gun with 30 psig fed to it, but the effectiveness of it is dramatically reduced. This is why there needs to be a device installed that’ll prevent it from being dead-ended so that you can operate at a higher pressure.

nozzle_anim_twit800x320
EXAIR Super Air Nozzle entrainment

EXAIR’s Super Air Nozzles are designed with fins that serve two purposes. They help to entrain ambient air from the environment, allowing us to maximize the force and flow from the nozzle but keeping the compressed air consumption minimal. In addition, these fins are what prevents the nozzle openings from being completely blocked off. Using an OSHA compliant compressed air nozzle for all points where a blowoff operation is being performed should be a priority. Each individual infraction will result in a fine if you’re subject to an OSHA inspection. Inspections are typically unannounced, so it’s important to take a look around your shop and make sure you’re using approved products.

sag-osha-compliant
The fins along the outside of the Super Air Nozzle prevent it from being dead-ended

So, go ahead and make 2019 the year of energy savings, increased efficiency, and improving worker safety. You’ll find all of the tools you need in EXAIR’s 32nd edition of the catalog. Click here if you’d like a hard copy sent directly to you! Or, get in touch with us today to find out how you can get saving with an Intelligent Compressed Air Product.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD