EXAIR Cold Gun Prevents Melting of Chocolate During Filling

With Valentine’s Day coming up in the U.S. many of us will be buying chocolates for our significant other. My wife (somehow) doesn’t particularly care for chocolate, so I buy some for her anyway knowing that it will sit around until I eat it. I think most of us would agree that chocolate is even more delicious when melted and drizzled all over the top of just about anything. But, melted chocolate isn’t always a good thing.

I recently worked with a company that manufactures chocolate products. They came out with a new line of small candies and were encountering an issue during packaging. In their process, the chocolates are formed, cooled, and packaged for resale. During the packaging process they were experiencing a problem that caused the chocolates to melt. The bags are heat-sealed along the sides and bottom. This heat was transferring from the bag to the chocolates and causing them to melt. Rather than having a finished package of individual candies, they were melting together to form one large lump. Not exactly what they are hoping to deliver to their consumers.

 

Video of the bag filling process

Fortunately, EXAIR offers a range of different products that are suitable for cooling. For this application, they utilized a Model 5330 High Power Dual Outlet Cold Gun. With the fan-type nozzle installed, they were able to cool both sides of the package immediately after sealing and just before filling the bags with chocolates.

EXAIR’s Cold Gun was a Product of the Year finalist in 2007. Using only a source of compressed air, the Cold Gun and High-Power Cold Gun produces a stream of clean, cold air 50° (28°C) below your compressed air supply temperature. The Cold Gun is very quiet at only 70dBA and has no moving parts to wear out. Just supply it with clean, dry compressed air and its maintenance free! It’s available as both a standard and High-Power option, providing 2x the cooling power. Each style is available with either a single or dual cold outlet flow.

The Cold Gun is pre-set to an 80% Cold Fraction. In other words, 80% of the compressed air supplied to it will exhaust from the cold end of the tube, 20% from the hot end. This prevents the Cold Gun from freezing up during use and optimizes the gun’s cooling capacity. The Cold Gun is an ideal alternative to messy and expensive coolant mist systems. It eliminates the cost of purchase and disposal of cutting fluids as well as worker related health problems from breathing airborne coolant or slipping on wet floors. Replacing a coolant-based system also eliminates the need for secondary cleaning operations after milling or drilling.

If you have an application that you believe would be better served by the use of an EXAIR Cold Gun, give us a call.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Candy Producer Saves $4600 in Compressed Air with EXAIR’s EFC

A few months ago, I took a phone call from a manufacturing engineer who worked at a large candy production facility here in the United States. Extra chocolate was dripping out of the candy molds onto the conveyor belt below.  Within a few hours the belt was dirty enough they would have to stop the line and clean the residual chocolate off the belt. 

The best solution I found was a 72” 316 Stainless Steel Super Air Knife. It worked great when powered at 60 psig inlet pressure. The laminar flow of the Super Air Knife was perfectly suited for this application.  The knife was mounted between the mold and the belt to help solidify and blowoff the excess drips of chocolate. There was one drawback, the Super Air Knife was not needed to blow the belt continuously and the continuous demand was not desirable during peak production.

The simple solution for this was the EXAIR Electronic Flow Control, the EFC minimizes compressed air use by turning off the air when a sensor is triggered. Since there was a 4.5-minute time gap between each mold set this was a great solution. When the photoelectric eye saw a mold, it then told the solenoid valve to open and supply the knife with compressed air for 30 seconds while the mold was open and the excess chocolate would be dripping. See the Savings calculations below;

efcapp

Without using the EFC

(* Using $ 0.25 per 1000 SCFM used)

  • 72” Super Ion Air Knife = 165.6 SCFM @ 60 PSIG
  • 165.6 SCFM x 60 minutes x $ 0.25 / 1000 SCFM = $ 2.48 per hour
  • $ 2.48 per hour x 8 hours = $ 19.84 per 8-hour day
  • $ 19.84 x 5 days = $ 99.20 per work week
  • $ 99.20 per week x 52 weeks =$5,158.40 per work year without the EFC control

 

With the EFC installed (turning the compressed air off for 4 minutes 30 seconds with a 30 second on time = 6 minutes/hour compressed air usage)

  • 165.6 SCFM x 6 minute x $ 0.25 / 1000 SCFM = $ 0.25 per hour
  • $ 0.25 per hour x 8 hours = $ 2.00 per 8-hour day
  • $ 2.00 x 5 days = $ 10.00 per work week
  • $ 10.00 per week x 52 weeks = $520.00 per work year with the EFC control 

$ 5,158.40 per year (w/o EFC) – $ 520.00 per year (w/ EFC) = $4,638.40 projected savings per year by incorporating the EFC.

EFC287x250

This example illustrates, clearly, why choosing the EFC is a good idea. It has the ability to keep compressed air costs to a minimum and saves compressed air for use within other processes around the plant. With this type of compressed air savings, the unit would pay for itself in less than 3 months.

If you would like to see how we might be able to improve your process or provide a solution for valuable savings, please contact one of our Application Engineers.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

Super Air Nozzles Extend Maintenance Schedule in a Chocolate Factory

The process of making cocoa powder and chocolate products is fascinating to say the least.  The video above shows the process at the Hershey factory in a throwback “How Its Made” video from the 70’s. (I think; based on the hairstyles.  Also based on the video description, but mostly based on the hairstyles.)  It’s interesting to see the process and the mechanical aptitude it took to create the machines, especially with the weights and measures.  The level of complexity and number of steps involved can make you wonder how we ever figured it all out, but thankfully we did!

Current cocoa production follows the same basic process through harvesting, roasting, extracting cocoa butter, and grinding of cocoa cakes into powder.  And, like any manufacturing process, there are sure to be applications which demand unique solutions.  This is where a recent application took place for an EXAIR end user.

20160530_092938
The cooling carriage for the cocoa powder

Not shown in the video above is a cooling process for the cocoa powder.  During the cooling process the powder is transferred through a carriage system resembling a radiator without the fins.  Inside the carriage system cocoa powder can accumulate in the 180° bends, and the build-up over time can stop material flow.  So, these bends are serviced as part of a regular preventative maintenance program.

20160530_093713
Cocoa build-up in the curves of the carriage

The end user was looking for a way to extend the service interval length, hoping to find a solution to target the build-up areas in the 180° bends.  The current setup requires manual cleaning every 15 days of operation.  Modification of the existing setup is possible, provided it increases the time between maintenance procedures.

20160530_093039
The service procedure

The solution we devised is a series of 316 stainless steel Super Air Nozzles, fed into the curves of the cooling carriage to prevent accumulation of the cocoa powder.  The solution agitates any accumulating cocoa, removing the build-up and greatly extending the time between service intervals.

This solution can be implemented in one of two ways; either through periodic entry of the nozzles into the cooling carriage (a somewhat difficult solution to implement), or through permanent installation with guarding in place to protect the nozzles (even powders can deteriorate a material with direct contact over time).  A (very) crude representation of the permanent installation is shown below.

Cocoa curves
A quick sketch of the possible permanent solution

To install the nozzles into the curves of the cooling carriage, holes must be drilled into the curves.  Sealed bulkhead fittings can be installed into the holes, and the necessary compressed air lines can be fed through the sealed bulkhead fittings.  This will allow installation of the air nozzles in the needed locations.

The final detail left to be sorted in this application was the exact model Super Air Nozzle to be used.  The force requirement to dislodge the cocoa is highly specific and ultimately unknown, so we focused on a solution with what we deemed adequate force at an 80 PSIG operating pressure.  We chose a series of 1101SS Super Air Nozzles, remembering we can always reduce force and compressed air consumption through pressure regulation if needed.

We were happy to help implement a solution to provide the needed results with the most efficient use of compressed air.  After all, that’s what we do at EXAIR.  We help our customers find the most suitable, most efficient solutions for their applications.

If you have an application and would like to discuss a compressed air-based solution, contact an EXAIR Application Engineer.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com

3D Printing with Chocolate

Everyone seems to be talking about 3D printing lately. Last week, I received an email from a customer who had a new idea for 3D printing.

Chocolate!

Well I was intrigued. The customer wanted to modify current 3D Printing technology to work chocolate. There was obviously several hurdles. For instance, using a vat of molten chocolate as opposed to typical material, cleaning, and replacement parts to make a food safe low-cost printer. Her biggest problem was how to cool the chocolate after the application of each successive layer upon dispensing, so the chocolate didn’t pool into an amorphous blob.

She came to me asking about the Adjustable Spot Cooler. This product caught her attention because of the ease of installation with the magnetic base, the adjustable temperature control and instant cold air response. The magnetic base could be incorporated into her design fairly easily. The adjustable temperature control would allow her to decrease the temperature and decrease the cold flow at the same time. If she found that the force of the compressed air was damaging the printing process, reducing the cold flow would allow her to use a colder temperature to harden the layer that had just been used.  Finely the compressed air could be rapidly controlled with a solenoid to only run when the cold air is needed, which would limit compressed air cost.

Because of the high freezing point of chocolate and overall size constraints, I recommended that she first try a model 3204 Vortex Tube. A small Vortex Tube, which could use as little as 4 SCFM of compressed air and provide up to 3.2 SFCM of cold air at fifty degrees below the compressed air temperature, would be more than capable of forming a shell on the surface area of each extrusion. It is reasonable to assume that this air temperature would be around 20 degrees Fahrenheit, which could create a delicious chocolate shell for the next layer of chocolate be deposited.  She was able to buy the magnetic base, model 9029, separately to aid in her installation.Chocolate tools

Hopefully, you read this after lunch, because I made myself hungry looking for chocolate pictures, but I found what I would print for Christmas.

Dave Woerner
Application Engineer
davewoerner@exair.com
@EXAIR_DW