Liquid Spray Nozzles Improve Gummy Candy Production

One of the more popular treats for kids and adults are gummies.  They can be sweet, sour, and in different shapes and colors.  A candy company that makes gummy bears was looking for a better way to spray food-grade oil onto their product.  They contacted EXAIR about our Air Atomizing Spray Nozzles. 

We discussed their setup and process for making the gummy candies; or in this case gummy bears.  The sugary mixture is poured into molds that are coated with corn starch.  The corn starch helps to keep the gummy from sticking to the mold.  Once hardened, the bears will be released from the molds and travel through a stainless-steel spinning drum.  In here, they apply a light food-grade oil onto the bears.  This process will hide the starch and give the candy that glazed and colored feature.  The drum was near 60” (1.52 meters) long and spun at 19 RPM.  The gummy bears would tumble along the length of the drum at a designed production rate of 2000 Kg/hr. (4,400 Lbs./hr.).  They used drip tubes along the top to apply the food-grade oil onto the gummy bears.  They noticed that the color was not as good and the coverage was spotty.  The oil pump was metered in a range of 0.35 – 3 gal/hr. (1.32 – 11.3 l/h).  The temperature inside the drum could reach up to 150oF (65oC), and the viscosity of the food-grade oil ranged between 190 – 400 cps.  In order to get the best results for quality, they had to reduce their production rates to about 1,700 to 1,800 Kg/hr. 

To determine the correct solution, we had to dive a bit more into their application.  The details of the EXAIR Atomizing Nozzles are measured with water as the liquid.  Since they are using an oil at different temperatures, the specific gravity will change slightly.  For their oil, the specific gravity is 0.92 at 20oC and 0.89 at 65oC.  We can use Equation 1 to convert the required flow rate from the food-grade oil to water.

Equation 1:

Q1 = Q2 * SQRT (SG2 / SG1)

Q1 – Flow of water (gph)

Q2 – Flow of oil (gph)

SG1 – Specific Gravity of water

SG2 – Specific Gravity of oil

The Specific Gravity of water is 1.  With the range of specific gravity for the oil, we can calculate the range that is needed as indicated by water.  Then we can make a selection as referenced by our data in the catalog.  Since we want to make sure that we can cover the range of the metered oil pump, we will use the maximum flow rate of 3 gph.  In adding the values, we get the following:

@20oC  Q1 = 3 gph * sqrt(0.92) = 2.88 gph

@65oC  Q1 = 3 gph * sqrt(0.89) = 2.83 gph  

Since the viscosity ranges above 300 cps., I recommended the External Mix Atomizing Nozzles to be mounted along the length of the rotating drum.  The External Mix can handle viscous liquids up to 800 cps.  Unlike the drip method, the EXAIR Liquid Atomizing Spray Nozzles use compressed air to shear the oil into small droplets and to disperse the oil in a wide pattern.  With the smaller particle size, we can get more coverage area which will allow them to use less food-grade oil.  The coverage area on the gummy bears was near 15” (38cm) as they rolled down the drum.  I also recommended the No-Drip option to allow for versatility in their process.  The No-Drip option for the Atomizing Nozzles is a very nice option which will stop the liquid solution from dripping when not in use.  When they needed to apply the oil, they would just turn on the compressed air to the Atomizing Nozzle.  It made it very easy to control.  This was important to reduce excess usage and non-conforming parts. It also keeps the inside of the drum oil free during cleaning cycles.   

EB2010SS

From the data above, I recommended three pieces of the model EB2010SS, No Drip External Mix Wide Angle Flat Fan Pattern.  The spray pattern was 14” (35.6cm) wide to cover part of the 60” (1.52m) length of the drum.  With an estimated 1 gph for each nozzle, we would be able to spray the maximum requirement as calculated above (2.88 gph).  After installation, they were able to get a consistent deep color of the gummy bear at the maximum production rate of 2,000 Kg/hr.  They also noticed that with the fine particle spray, they were able to use less oil.  With the three pieces of the model EB2010SS, they were able to reach maximum production rates with less food-grade oil and reduce scrap rates.

If you have a liquid that you would like to spray evenly, efficiently, and effectively; EXAIR Atomizing Nozzles can do that for you.  You can contact an Application Engineer for help.  For the customer above, they were able to create those gummy treats for kids and adults.  Yummy.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Picture: Giant Gummy Bear by Alexas_FotosPixabay licence.

Save Compressed Air with the EXAIR Electronic Flow Control

The best way to save compressed air is to simply turn it off when it’s not being used. This might seem pretty simple, but there may be processes in your facility where this couldn’t be achieved by just turning a valve. In applications where product is traveling along a conveyor, and must be dried, cooled, or blown off, there is likely some spacing in between the parts. It isn’t necessary to keep the blowoff running constantly if there’s periods of intermittent spacing. To help reduce the overall load on the air compressor, implementing a solution to shut the air off in between each part can have a dramatic impact. EXAIR’s Electronic Flow Control, or EFC, is designed to improve efficiency by reducing overall compressed air usage. It utilizes a photoelectric sensor that detects when the part is present. When it’s not, it triggers a solenoid valve to close and shut off the compressed air supply.

efcapp
EXAIR EFC

One way to use the Electronic Flow Control would be for Turning a Atomizing Spray nozzle on to coat your product.  For example see the photo below where you could use the EFC to sense the pants coming down the line. Then turn the air supply on to spray a bleach solution to get the weathered look you are after. Once the pants pass the EFC will turn the nozzle off, replacing a manual operation awhile saving compressed air and your liquid solution!

Another use would be to tell when a hopper that is being filled by a Line Vac is empty or over filled.  You can adjust the sensor and the control module to sense that the hopper is empty and it will turn the compressed air on to the Line Vac to then feed the hopper.  Then set the timer module so it will run for the length of time it takes to fill the hopper.  The other way would be to place the sensor at the top of the hopper and have it sense when the pile of media has reached the full level.

The EFC models available from stock can accommodate flows up to 350 SCFM. For applications requiring more compressed air, EFCs with dual solenoids are also available. If you have an application in one or more of your processes where intermittent compressed air use could help save you money, give us a call. We’d be happy to take a look at the application and help determine just how quickly the EFC could start paying YOU

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Candy Producer Saves $4600 in Compressed Air with EXAIR’s EFC

A few months ago, I took a phone call from a manufacturing engineer who worked at a large candy production facility here in the United States. Extra chocolate was dripping out of the candy molds onto the conveyor belt below.  Within a few hours the belt was dirty enough they would have to stop the line and clean the residual chocolate off the belt. 

The best solution I found was a 72” 316 Stainless Steel Super Air Knife. It worked great when powered at 60 psig inlet pressure. The laminar flow of the Super Air Knife was perfectly suited for this application.  The knife was mounted between the mold and the belt to help solidify and blowoff the excess drips of chocolate. There was one drawback, the Super Air Knife was not needed to blow the belt continuously and the continuous demand was not desirable during peak production.

The simple solution for this was the EXAIR Electronic Flow Control, the EFC minimizes compressed air use by turning off the air when a sensor is triggered. Since there was a 4.5-minute time gap between each mold set this was a great solution. When the photoelectric eye saw a mold, it then told the solenoid valve to open and supply the knife with compressed air for 30 seconds while the mold was open and the excess chocolate would be dripping. See the Savings calculations below;

efcapp

Without using the EFC

(* Using $ 0.25 per 1000 SCFM used)

  • 72” Super Ion Air Knife = 165.6 SCFM @ 60 PSIG
  • 165.6 SCFM x 60 minutes x $ 0.25 / 1000 SCFM = $ 2.48 per hour
  • $ 2.48 per hour x 8 hours = $ 19.84 per 8-hour day
  • $ 19.84 x 5 days = $ 99.20 per work week
  • $ 99.20 per week x 52 weeks =$5,158.40 per work year without the EFC control

 

With the EFC installed (turning the compressed air off for 4 minutes 30 seconds with a 30 second on time = 6 minutes/hour compressed air usage)

  • 165.6 SCFM x 6 minute x $ 0.25 / 1000 SCFM = $ 0.25 per hour
  • $ 0.25 per hour x 8 hours = $ 2.00 per 8-hour day
  • $ 2.00 x 5 days = $ 10.00 per work week
  • $ 10.00 per week x 52 weeks = $520.00 per work year with the EFC control 

$ 5,158.40 per year (w/o EFC) – $ 520.00 per year (w/ EFC) = $4,638.40 projected savings per year by incorporating the EFC.

EFC287x250

This example illustrates, clearly, why choosing the EFC is a good idea. It has the ability to keep compressed air costs to a minimum and saves compressed air for use within other processes around the plant. With this type of compressed air savings, the unit would pay for itself in less than 3 months.

If you would like to see how we might be able to improve your process or provide a solution for valuable savings, please contact one of our Application Engineers.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS