Save Compressed Air with the EXAIR Electronic Flow Control

The best way to save compressed air is to simply turn it off when it’s not being used. This might seem pretty simple, but there may be processes in your facility where this couldn’t be achieved by just turning a valve. In applications where product is traveling along a conveyor, and must be dried, cooled, or blown off, there is likely some spacing in between the parts. It isn’t necessary to keep the blowoff running constantly if there’s periods of intermittent spacing. To help reduce the overall load on the air compressor, implementing a solution to shut the air off in between each part can have a dramatic impact. EXAIR’s Electronic Flow Control, or EFC, is designed to improve efficiency by reducing overall compressed air usage. It utilizes a photoelectric sensor that detects when the part is present. When it’s not, it triggers a solenoid valve to close and shut off the compressed air supply.

efcapp
EXAIR EFC

One way to use the Electronic Flow Control would be for Turning a Atomizing Spray nozzle on to coat your product.  For example see the photo below where you could use the EFC to sense the pants coming down the line. Then turn the air supply on to spray a bleach solution to get the weathered look you are after. Once the pants pass the EFC will turn the nozzle off, replacing a manual operation awhile saving compressed air and your liquid solution!

Another use would be to tell when a hopper that is being filled by a Line Vac is empty or over filled.  You can adjust the sensor and the control module to sense that the hopper is empty and it will turn the compressed air on to the Line Vac to then feed the hopper.  Then set the timer module so it will run for the length of time it takes to fill the hopper.  The other way would be to place the sensor at the top of the hopper and have it sense when the pile of media has reached the full level.

The EFC models available from stock can accommodate flows up to 350 SCFM. For applications requiring more compressed air, EFCs with dual solenoids are also available. If you have an application in one or more of your processes where intermittent compressed air use could help save you money, give us a call. We’d be happy to take a look at the application and help determine just how quickly the EFC could start paying YOU

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Turn It Off: Saving Compressed Air The Easy Way

A major benefit to utilizing compressed air is the speed at which it can be shut off and re-energized for use – in fact, this can be done instantaneously. Shutting down the supply of compressed air to an application while it is not needed can drastically reduce the compressed air consumption of the process. This is an easy remedy that can produce significant savings.

Think about a place where you have a compressed air blow off with spaces between the parts or dwell times in conveyor travel. What about break times, do operators continue to keep the air on when they leave for a break or even worse, for the day?

Step number four in EXAIR’s Six Steps to Optimization is:

A simple manual ball valve and a responsible operator can provide savings at every opportunity to shut down the airflow. But an automated solution is a no-brainer and can provide significant savings.

Quarter Turn Ball Valves are low-maintenance and easy to install/use.

For a more automated approach, you can add a solenoid valve that would tie into your existing PLC or e-stop circuit, into your compressed air supply lines to aid in turning the compressed air on and off.

For an automated on/off solution can be found by using the EXAIR EFC (Electronic Flow Control). The EFC is made to accept 110V or 220V AC, and convert it to 24V DC to operate a sensor, timer, and solenoid valve. Its multiple operating modes allow you delay on, delay-off, and delay on/off among others. The operating mode can then be set to the specific time necessary for a successful application.

The spaces between parts can be turned into money saved. Every time you reach the end of a batch run, the EFC can turn the air off. You can also add solenoid valves and run them from your machine controls. If the machine is off, or the conveyor has stopped – close the solenoid valve and save the air. The modes are all defined in the video below.

So, take a look, or even better a listen, around the plant and see what you can find that could benefit from turning the air off; even if it is just for a moment it will help put money back into your bottom line.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

EXAIR Intelligent Compressed Air Products Are Automation’s Best Friend

For decades, children and adults (really cool ones, anyway) have enjoyed the popular board game, Mouse Trap:

The fun of the game is that it exaggerates the notion of providing an overly complicated solution to a simple problem – a notion made famous by Rube Goldberg, whose namesake machines are as thought-provoking as they are entertaining to watch.

As fun as Rube Goldberg machines are, there are actually ways to engineer something “just enough” – that’s what automation engineers strive to do every day; and EXAIR is here to help.

Probably the most popular feature, for automated applications, of engineered compressed air products is instantaneous performance.  For example:

  • When an electric motor-powered blower is used for a blow off, cooling, or drying application, there’s going to be a “ramp-up” period to reach full rated flow.  Not so with an EXAIR Intelligent Compressed Air Product, like a Super Air Wipe, Super Air Knife, Super Air Nozzle, Super Air Amplifier, etc.  They are generating their rated flow as fast as you can open the supply valve.

    EXAIR Intelligent Compressed Air Products such as (left to right) the Super Air Wipe, Super Air Knife, Super Air Nozzle, and Super Air Amplifier provide instant on/off performance, at rated levels.
  • Likewise, vacuum pumps necessarily take some time to develop their rated vacuum level.  But the venturi in an EXAIR E-Vac Vacuum Generator draws its full rated vacuum flow as soon as the compressed air is turned on.  The peak vacuum level is achieved in the amount of time it takes to pull the air out of the lines or vessel.

    These are all examples of how an E-Vac pick-and-place system is just a solenoid valve away from being an automated process.
  • All EXAIR Atomizing Spray Nozzles can be fitted with a No Drip feature, which allows instant on/off control, simply by opening/closing a valve in the compressed air supply line.  This is often done with a solenoid valve tied in to the machine controls, or with an EXAIR EFC, Electronic Flow Control (more on that in a minute.)  They can handle up to 180 cycles per minute, for quick bursts of atomized mist, on demand.  No other method of liquid flow control can match that kind of performance.

    Fine mist liquid spray, on demand, from an EXAIR No Drip Atomizing Spray Nozzle.
  • EXAIR Spot Cooling Products, Cold Guns, and Cabinet Cooler Systems all use Vortex Tube technology.  This “splits” a supply of compressed air into a hot, and cold air flow.  Unlike refrigerant, chilled water, or cryogenic gas methods, they don’t rely on conduction or convection heat transfer between materials, so cold (and hot) air is produced, at rated flow and temperature, instantly.  They, too, can be turned on & off as often as needed…there are no moving parts to wear or damage.

    The unique phenomenon of the Vortex Tube principle makes cold air instantly for as long – or short – a time as needed.

Automation projects often incorporate existing logic, controls, timers, etc. to actuate the process.  For example, if you wanted to use a Chip Vac to vacuum debris from a chop saw, you can simply wire a solenoid valve into the power switch of the saw…it’ll run while the saw runs, and stop when the saw is turned off.

EXAIR’s award winning EFC Electronic Flow is ready to go, right out of the box.

If there are no existing logic, controls, timers, etc., EXAIR has a solution for those cases too: the EFC Electronic Flow Control.  We have four models to accommodate up to 350 SCFM of compressed air flow – that’s ten feet worth of Super Air Knives.  The EFC consists of a photoelectric sensor that opens/closes a solenoid valve, based on the programming of the integral timer.  It’s a stand alone system that doesn’t require input from, nor is it affected by, any external factors.

Automation projects can get pretty intricate.  EXAIR Intelligent Compressed Air Products are aimed at keeping their involvement as simple as possible.  If you’d like to find out more, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Candy Producer Saves $4600 in Compressed Air with EXAIR’s EFC

A few months ago, I took a phone call from a manufacturing engineer who worked at a large candy production facility here in the United States. Extra chocolate was dripping out of the candy molds onto the conveyor belt below.  Within a few hours the belt was dirty enough they would have to stop the line and clean the residual chocolate off the belt. 

The best solution I found was a 72” 316 Stainless Steel Super Air Knife. It worked great when powered at 60 psig inlet pressure. The laminar flow of the Super Air Knife was perfectly suited for this application.  The knife was mounted between the mold and the belt to help solidify and blowoff the excess drips of chocolate. There was one drawback, the Super Air Knife was not needed to blow the belt continuously and the continuous demand was not desirable during peak production.

The simple solution for this was the EXAIR Electronic Flow Control, the EFC minimizes compressed air use by turning off the air when a sensor is triggered. Since there was a 4.5-minute time gap between each mold set this was a great solution. When the photoelectric eye saw a mold, it then told the solenoid valve to open and supply the knife with compressed air for 30 seconds while the mold was open and the excess chocolate would be dripping. See the Savings calculations below;

efcapp

Without using the EFC

(* Using $ 0.25 per 1000 SCFM used)

  • 72” Super Ion Air Knife = 165.6 SCFM @ 60 PSIG
  • 165.6 SCFM x 60 minutes x $ 0.25 / 1000 SCFM = $ 2.48 per hour
  • $ 2.48 per hour x 8 hours = $ 19.84 per 8-hour day
  • $ 19.84 x 5 days = $ 99.20 per work week
  • $ 99.20 per week x 52 weeks =$5,158.40 per work year without the EFC control

 

With the EFC installed (turning the compressed air off for 4 minutes 30 seconds with a 30 second on time = 6 minutes/hour compressed air usage)

  • 165.6 SCFM x 6 minute x $ 0.25 / 1000 SCFM = $ 0.25 per hour
  • $ 0.25 per hour x 8 hours = $ 2.00 per 8-hour day
  • $ 2.00 x 5 days = $ 10.00 per work week
  • $ 10.00 per week x 52 weeks = $520.00 per work year with the EFC control 

$ 5,158.40 per year (w/o EFC) – $ 520.00 per year (w/ EFC) = $4,638.40 projected savings per year by incorporating the EFC.

EFC287x250

This example illustrates, clearly, why choosing the EFC is a good idea. It has the ability to keep compressed air costs to a minimum and saves compressed air for use within other processes around the plant. With this type of compressed air savings, the unit would pay for itself in less than 3 months.

If you would like to see how we might be able to improve your process or provide a solution for valuable savings, please contact one of our Application Engineers.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS