Plumb it Right for Full Performance!

Many times when we provide the air consumption of an EXAIR product, we get a response like…. “I’ve got plenty of pressure, we run at around 100 PSIG”. While having the correct pressure available is important, it doesn’t make up for the volume requirement or SCFM (Standard Cubic Feet per Minute) needed to maintain that pressure. We commonly reference trying to supply water to a fire hose with a garden hose, it is the same principle, in regards to compressed air.

When looking to maintain an efficient compressed air system, it’s important that you use properly sized supply lines and fittings to  support the air demand (SCFM) of the point-of-use device. The smaller the ID and the longer the length of air supply line, it becomes more difficult for the air to travel through the system. Undersized supply lines or piping can sometimes be the biggest culprit in a compressed air system as they can lead to severe pressure drops or the loss of pressure from the compressor to the end use product.

Take for example our 18″ Super Air Knife. An 18″ Super Air Knife will consume 52.2 SCFM at 80 PSIG. We recommend using 1/2″ Schedule 40 pipe up to 10′ or 3/4″ pipe up to 50′. The reason you need to increase the pipe size after 10′ of run is that 1/2″ pipe can flow close to 100 SCFM up to 10′ but for a 50′ length it can only flow 42 SCFM. On the other hand, 3/4″ pipe is able to flow 100 SCFM up to 50′ so this will allow you to carry the volume needed to the inlet of the knife, without losing pressure through the line.

Pipe size chart for the Super Air Knife

Another problem area is using restrictive fittings, like quick disconnects. While this may be useful with common everyday pneumatic tools, like an impact wrench or nail gun, they can severely limit the volumetric flow to a device requiring more air , like a longer length air knife.

1/4″ Quick Connect

For example, looking at the above 1/4″ quick disconnect, the ID of the fitting is much smaller than the NPT connection size. In this case, it is measuring close to .192″. If you were using a device like our Super Air Knife that features 1/4″ FNPT inlets, even though you are providing the correct thread size, the small inside diameter of the quick disconnect causes too much of a restriction for the volume (SCFM) required to properly support the knife, resulting in a pressure drop through the line, reducing the overall performance.

If you have any questions about compressed air applications or supply lines, please contact one of our application engineers for assistance.

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Friction Loss – Pressure Drops – Fitting Restrictions – Why Compressed Air Plumbing Matters

Over the weekend I was working on a car in my driveway and I needed a large volume of air at the far end of the car to try and unplug a clogged sunroof drain line.  Rather than trying to move the car while it was mostly taken apart, I just hooked up another air line extension and started to go to the drain.   Even knowing what I know as an EXAIR Application Engineer about lengths of tubing, air restriction, and fitting restrictions, I went ahead with the quick and easy “fix”.

An example of pressure drop from a compressed air quick disconnect.

I grabbed another 30′ – 3/8″ i.d. air line with 1/4″ quick disconnects (see why this is wrong with this blog) on both end, rather than getting out the 50′ long 1/2″ i.d. air line that I have with proper fittings that then reduce down to a 1/4″NPT at the end to tie into most of my air tools. By doing so I ended up hooking up a Safety Air Gun which then gave a very light puff of air into the tube and the clog in the line went nowhere.  As a matter of fact, it was almost like it laughed because the tubing vibrated as if the clog said, “Pfft I am going nowhere.”

I then, stepped back and evaluated what I had done in a rush to try and get a job done rather than taking the extra five minutes to get the proper air line to do the job.   I then spent 10 minutes putting that hose up and getting out the correct hose.  Then, with a whoosh and a thud the clog was launched into my yard from the clogged drain port and I finished the repairs.

If only I had watched Russ Bowman’s spectacular video on Proper Compressed Air Supply Plumbing the day before. Rather than wasting time with the quick “fix” that cost me more time and didn’t fix anything I should have taken a little more time up front to verify I had properly sized my lines for the job at hand.

If you would like to discuss compressed air plumbing, appropriate line sizes, or insufficient flow on your compressed air system, please contact an EXAIR Application Engineer.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Proper Supply Line Size And Fittings Provide Peak Performance

Many times when we provide the air consumption of an EXAIR product, we get a response like…. “I’ve got plenty of pressure, we run at around 100 PSIG”. While having the correct pressure available is important, it doesn’t make up for the volume requirement or SCFM (Standard Cubic Feet per Minute) needed to maintain that pressure. We commonly reference trying to supply water to a fire hose with a garden hose, it is the same principle, in regards to compressed air.

When looking to maintain an efficient compressed air system, it’s important that you use properly sized supply lines and fittings to  support the air demand (SCFM) of the point-of-use device. The smaller the ID and the longer the length of run, it becomes more difficult for the air to travel through the system. Undersized supply lines or piping can sometimes be the biggest culprit in a compressed air system as they can lead to severe pressure drops or the loss of pressure from the compressor to the end use product.

Take for example our 18″ Super Air Knife. A 18″ Super Air Knife will consume 52.2 SCFM at 80 PSIG. We recommend using 1/2″ Schedule 40 pipe up to 10′ or 3/4″ pipe up to 50′. The reason you need to increase the pipe size after 10′ of run is that 1/2″ pipe can flow close to 100 SCFM up to 10′ but for a 50′ length it can only flow 42 SCFM. On the other hand, 3/4″ pipe is able to flow 100 SCFM up to 50′ so this will allow you to carry the volume needed to the inlet of the knife, without losing pressure through the line.

Pipe size chart for the Super Air Knife

We also explain how performance can be negatively affected by improper plumbing in the following short video:

 

Another problem area is using restrictive fittings, like quick disconnects. While this may be useful with common everyday pneumatic tools, like an impact wrench or nail gun, they can severely limit the volumetric flow to a device requiring more air , like a longer length air knife.

1/4″ Quick Connect

For example, looking at the above 1/4″ quick disconnect, the ID of the fitting is much smaller than the NPT connection size. In this case, it is measuring close to .192″. If you were using a device like our Super Air Knife that features 1/4″ FNPT inlets, even though you are providing the correct thread size, the small inside diameter of the quick disconnect causes too much of a restriction for the volume (SCFM) required to properly support the knife, resulting in a pressure drop through the line, reducing the overall performance.

If you have any questions about compressed air applications or supply lines, please contact one of our application engineers for assistance.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

Typical Compressed Air Plumbing Mistakes

As a manufacturer of Intelligent Compressed Air Products, we like to address one of the most common problems with installation, proper plumbing.  A picture is worth a 1,000 words, and knowledge is power.  I will show both to help eliminate any pitfalls when installing our products.

A customer purchased a model 110072 Super Air Knife.  It is a powerful and efficient air knife that is 72 inches (1.8 meter) long.  He mounted it across his sheet to blow debris off from the surface of his product.  After installing the Super Air Knife, he was having issues in getting a strong even force along the entire knife.  He would only get compressed air blowing on the ends of the Super Air Knife.  The center did not have anything coming out.  He needed our help to solve.  In detailing my forensics, I asked him for pictures of his installation as I went over some basic questions.  Here is what we found:

Question 1: What is the pressure at the entrance of the Super Air Knife?

Answer 1: 95 psig (6.5 bar)

Picture: The gage reading is at the regulator.

Solution: There should also be a pressure gage right at the entrance of the Super Air Knife. It helps to define any issues in the system by comparing line pressure at the regulator to inlet pressure at the Super Air Knife.  This customer would see a very low air pressure at the Super Air Knife caused by all the restrictions (reference below).

Issue 1
Issue 1

Question 2: What size is your compressed air line that is supplying the Super Air Knife?

Answer 2: 1 ½” NPT pipe. (From the installation manual, this is the correct size pipe to supply the air required for the Super Air Knife when it is 150′ from the compressor.)

Picture: The compressed air line is reduced from 1 ½” NPT to ¼” NPT pipe.  Yes, there is a 1-1/2″ pipe bringing air close to the Super Air Knife, but it is actually a 1/4″ NPT pipe fitting on a small coiled hose that is supplying the knife. Due to a lack of air vlume, the pressure drop is huge and it is performance of the Super Air Knife.

Solution: They will need to run 1 ½” NPT pipe to the Super Air Knife.  Then uses Pipe Tees and/or Crosses to branch into the feed lines to the Super Air Knife.

Issue 2
Issue 2

Question 3: Do you have any restrictions in the compressed air line?

Answer 3: I don’t know.

Picture: We have multiple issues.

  1. The ¼” NPT compressed air line is too small (huge restriction).
  2. The red filter in photo above is too small (huge restriction). The black filter and black regulator are sized correctly to supply the Super Air Knife, but the red filter is too small causing a large pressure drop.
  3. One of the biggest culprits in choking compressed air flow to a pneumatic product are Quick Disconnect fittings. The picture below is a quick disconnect on the inlet port to the Super Air Knife (huge restriction)
  4. The yellow compressed air line is also way too small. I only bring this up because there is a difference in diameters from Schedule 40 pipe to air hose and tubing. Make sure that the inner diameters match or are larger than the recommended pipe size.

Solution: In order to have the Super Air Knife properly working, we have to make sure that it can get enough compressed air.  I had the customer remove all the small fittings, yellow tubing, quick disconnects, and the small filter.

Issue 3
Issue 3

Question 4: How many ports on the Super Air Knife are you using to supply the compressed air?

Answer 4: 2 ports.

Picture: With this length of the Super Air Knife, it requires 4 ports to supply compressed air (reference the Installation Manual). They should be evenly spaced from one end of the Super Air Knife to the other.  This is another reason that he only had compressed air coming out at the ends of the Super Air Knife.

Solution: EXAIR offers a Plumbing Kit to make sure the entire knife is supplied correctly.  The plumbing kit contains all the proper size fittings and hose to plumb the correct number of Air Knife inlets. These kits prevent you from hunting for the right fittings and from using undersized parts, which will not be able to supply the knife with enough air.

Model 9078 PKI Kit
Model 9078 Plumbing Kit

With proper installation at the beginning, it will save you time and headaches, and you will be able to utilize the EXAIR products properly. If you have additional questions about your setup, you can contact an Application Engineer at EXAIR at 1-800-903-9247.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb