Don’t Fall Victim To Undersized Piping

Pressure drops, incorrect plumbing, undersized piping, insufficient flow; if you hear these terms from tech support of your point of use compressed air products or from your maintenance staff when explaining why a process isn’t working then you may be a victim of improper compressed air piping selection.
Often time this is due to a continued expansion of an existing system that was designed around a decade old plan. It could also come from a simple misunderstanding of what size of piping is needed and so to save some costs, smaller was used. Nonetheless, if you can understand a small number of variables and what your system is going to be used for, you can ensure the correct piping is used. The variables that you will want to consider when selecting a piping size that will suit your need and give the ability to expand if needed are shown below.

  • Minimum Operating Pressure Allowed (psig) – Lowest pressure permitted by any demand side point of use product.
  • System Pressure (psig) – Safe operating pressure that will account for pressure drops.
  • Flow Rate (SCFM) of demand side (products needing the supplied compressed air)
  • Total Length of Piping System (feet)
  • Piping Cost ($)
  • Installation Cost ($)
  • Operational Hours ( hr.)
  • Electical Costs ($/kwh)
  • Project Life (years) – Is there a planned expansion?

An equation can be used to calculate the diameter of pipe required for a known flow rate and allowable pressure drop. The equation is shown below.

A = (144 x Q x Pa) / (V x 60 x (Pd + Pa)
Where:
A = Cross-Sectional are of the pipe bore. (sq. in.).
Q = Flow rate (cubic ft. / min of free air)
Pa = Prevailing atmospheric absolute pressure (psia)
Pd  = Compressor discharge gauge pressure (psig)
V = Design pipe velocity ( ft/sec)

If all of these variables are not known, there are also reference charts which will eliminate the variables needed to total flow rate required for the system, as well as the total length of the piping. The chart shown below was taken from EXAIR’s Knowledge Base.

Once the piping size is selected to meet the needs of the system the future potential of expansion should be taken into account and anticipated for. If no expansion is planned, simply take your length of pipe and start looking at your cost per foot and installation costs. If expansions are planned and known, consider supplying the equipment now and accounting for it if the additional capital expenditure is acceptable at this point.

The benefits to having properly sized compressed air lines for the entire facility and for the long-term expansion goals makes life easier. When production is increased, or when new machinery is added there is not a need to re-engineer the entire system in order to get enough capacity to that last machine. If the main compressed air system is undersized then optimal performance for the facility will never be achieved. By not taking the above variables into consideration or just using what is cheapest is simply setting the system up for failure and inefficiencies. All of these considerations lead to an optimized compressed air system which leads to a sustainable utility.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Importance Of Proper Pneumatic Tube, Pipe, And Fittings

When it comes to engineered compressed products, the number one cause of less-than-optimal performance is improper supply line sizing.  This can mean one of two things:

  • The hose, pipe, or tubing running to the device is too small in diameter.
  • The hose, pipe or tubing is big enough in diameter, but too long.

The problem with either of these is line loss (follow that link if you want to do the math.)  Put simply, the air wants to move faster than it’s physically permitted to.  Any time fluid flows through a conduit of any sort, friction acts on it via contact with the inside surface of said conduit.

With smaller diameters, a larger percentage of the air flow is affected…no matter what diameter the line is, the air closest to the inner wall is affected by the friction generated.  When diameter increases, the thickness of this affected zone doesn’t increase proportionally, so larger diameters mean less of the air is affected by friction.  It also means there’s a lot more room (by a factor of the square of the radius, times pi…thanks, Archimedes!) for the air to flow through.

Likewise, with longer lengths, there’s more contact, which equals more friction.  Length, however, is often a non-negotiable.  You can’t just up and move a 100HP air compressor from one part of the plant to another.  So, when we’re talking about selecting proper supply lines, we’re going to start with the distance from the compressed air header to our device, and pick the diameter that will give us the flow we need through that length.  In fact, that’s exactly how to use the Recommended Infeed Pipe Size table in EXAIR’s Super Air Knife Installation & Maintenance Guide:

This table comes directly from the Installation & Operation Instructions for the Super Air Knife.

Once we have the correct line size (diameter,) let’s consider the fittings:

  • Tapered pipe threads (NPT or BSPT) are the best.  They offer no restriction in flow, and are readily commercially available.  If you’re using pipe, these are the standard threads for fittings.  If you want to use hose, a local hydraulic/pneumatic shop can usually make hoses with the fittings you need, at the service counter, while you wait.
  • If you need to frequently break and make the connection (e.g., a Chip Vac System that’s used throughout your facility,) quick connects are convenient and inexpensive.  Push-to-connect types are by far the most common, but a word of warning: they’re notoriously restrictive, as the inside diameter of the male end is markedly smaller than the line size.  If you use them, go up a size or two…a quick connect made for 1/2 NPT connections will work just fine for a 1/4″ line:
  • The nice thing about these quick connects is that you don’t have to depressurize the line to make or break the connection.  If you have the ability to depressurize the line, though, claw-type fittings (like the one shown on the right) provide the convenience of a quick connect, without the restriction in flow.

Proper air supply is key to performance of any compressed air product.  If you want to know, at a glance, if you’re supplying it properly, install a pressure gauge right at (or as close as practical) to the inlet.  Any difference in its reading and your header pressure indicates a restriction.  Here’s a video that clearly shows how this all works:

I want to make sure you get the most out of your compressed air system.  If you want that to, give me a call with any questions you might have.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Friction Loss – Pressure Drops – Fitting Restrictions – Why Compressed Air Plumbing Matters

Over the weekend I was working on a car in my driveway and I needed a large volume of air at the far end of the car to try and unplug a clogged sunroof drain line.  Rather than trying to move the car while it was mostly taken apart, I just hooked up another air line extension and started to go to the drain.   Even knowing what I know as an EXAIR Application Engineer about lengths of tubing, air restriction, and fitting restrictions, I went ahead with the quick and easy “fix”.

An example of pressure drop from a compressed air quick disconnect.

I grabbed another 30′ – 3/8″ i.d. air line with 1/4″ quick disconnects (see why this is wrong with this blog) on both end, rather than getting out the 50′ long 1/2″ i.d. air line that I have with proper fittings that then reduce down to a 1/4″NPT at the end to tie into most of my air tools. By doing so I ended up hooking up a Safety Air Gun which then gave a very light puff of air into the tube and the clog in the line went nowhere.  As a matter of fact, it was almost like it laughed because the tubing vibrated as if the clog said, “Pfft I am going nowhere.”

I then, stepped back and evaluated what I had done in a rush to try and get a job done rather than taking the extra five minutes to get the proper air line to do the job.   I then spent 10 minutes putting that hose up and getting out the correct hose.  Then, with a whoosh and a thud the clog was launched into my yard from the clogged drain port and I finished the repairs.

If only I had watched Russ Bowman’s spectacular video on Proper Compressed Air Supply Plumbing the day before. Rather than wasting time with the quick “fix” that cost me more time and didn’t fix anything I should have taken a little more time up front to verify I had properly sized my lines for the job at hand.

If you would like to discuss compressed air plumbing, appropriate line sizes, or insufficient flow on your compressed air system, please contact an EXAIR Application Engineer.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Consider these Variables When Choosing Compressed Air Pipe Size

Here on the EXAIR blog we discuss pressure drops, correct plumbing, pipe sizing, and friction losses within your piping system from time to time.   We will generally even give recommendations on what size piping to use.  These are the variables that you will want to consider when selecting a piping size that will suit your need and give the ability to expand if needed.

The variables to know for a new piping run are as follows.

  • Flow Rate (SCFM) of demand side (products needing the supplied compressed air)
  • System Pressure (psig) – Safe operating pressure that will account for pressure drops.
  • Minimum Operating Pressure Allowed (psig) – Lowest pressure permitted by any demand side point of use product.
  • Total Length of Piping System (feet)
  • Piping Cost ($)
  • Installation Cost ($)
  • Operational Hours ( hr.)
  • Electical Costs ($/kwh)
  • Project Life (years) – Is there a planned expansion?

An equation can be used to calculate the diameter of pipe required for a known flow rate and allowable pressure drop.   The equation is shown below.

A = (144 x Q x Pa) / (V x 60 x (Pd + Pa)
Where:
A = Cross-Sectional are of the pipe bore. (sq. in.).
Q = Flow rate (cubic ft. / min of free air)
Pa = Prevailing atmospheric absolute pressure (psia)
Pd  = Compressor discharge gauge pressure (psig)
V = Design pipe velocity ( ft/sec)

If all of these variables are not known, there are also reference charts which will eliminate the variables needed to total flow rate required for the system, as well as the total length of the piping. The chart shown below was taken from EXAIR’s Knowledge Base.

Piping
Airflow Through 1/4″ Shed. 40 Pipe

Once the piping size is selected to meet the needs of the system the future potential of expansion should be taken into account and anticipated for.   If no expansion is planned, simply take your length of pipe and start looking at your cost per foot and installation costs.    If expansions are planned and known, consider supplying the equipment now and accounting for it if the additional capital expenditure is acceptable at this point.

The benefits to having properly sized compressed air lines for the entire facility and for the long term expansion goals makes life easier.   When production is increased, or when new machinery is added there is not a need to re-engineer the entire system in order to get enough capacity to that last machine.   If the main compressed air system is undersized then optimal performance for the facility will never be achieved.   By not taking the above variables into consideration or just using what is cheapest is simply setting the system up for failure and inefficiencies.   All of these considerations lead to an optimized compressed air system which leads to a sustainable utility.

Brian Farno
Application Engineer Manager
BrianFarno@EXAIR.com
@EXAIR_BF