Importance Of Proper Pneumatic Tube, Pipe, And Fittings

When it comes to engineered compressed products, the number one cause of less-than-optimal performance is improper supply line sizing.  This can mean one of two things:

  • The hose, pipe, or tubing running to the device is too small in diameter.
  • The hose, pipe or tubing is big enough in diameter, but too long.

The problem with either of these is line loss (follow that link if you want to do the math.)  Put simply, the air wants to move faster than it’s physically permitted to.  Any time fluid flows through a conduit of any sort, friction acts on it via contact with the inside surface of said conduit.

With smaller diameters, a larger percentage of the air flow is affected…no matter what diameter the line is, the air closest to the inner wall is affected by the friction generated.  When diameter increases, the thickness of this affected zone doesn’t increase proportionally, so larger diameters mean less of the air is affected by friction.  It also means there’s a lot more room (by a factor of the square of the radius, times pi…thanks, Archimedes!) for the air to flow through.

Likewise, with longer lengths, there’s more contact, which equals more friction.  Length, however, is often a non-negotiable.  You can’t just up and move a 100HP air compressor from one part of the plant to another.  So, when we’re talking about selecting proper supply lines, we’re going to start with the distance from the compressed air header to our device, and pick the diameter that will give us the flow we need through that length.  In fact, that’s exactly how to use the Recommended Infeed Pipe Size table in EXAIR’s Super Air Knife Installation & Maintenance Guide:

This table comes directly from the Installation & Operation Instructions for the Super Air Knife.

Once we have the correct line size (diameter,) let’s consider the fittings:

  • Tapered pipe threads (NPT or BSPT) are the best.  They offer no restriction in flow, and are readily commercially available.  If you’re using pipe, these are the standard threads for fittings.  If you want to use hose, a local hydraulic/pneumatic shop can usually make hoses with the fittings you need, at the service counter, while you wait.
  • If you need to frequently break and make the connection (e.g., a Chip Vac System that’s used throughout your facility,) quick connects are convenient and inexpensive.  Push-to-connect types are by far the most common, but a word of warning: they’re notoriously restrictive, as the inside diameter of the male end is markedly smaller than the line size.  If you use them, go up a size or two…a quick connect made for 1/2 NPT connections will work just fine for a 1/4″ line:
  • The nice thing about these quick connects is that you don’t have to depressurize the line to make or break the connection.  If you have the ability to depressurize the line, though, claw-type fittings (like the one shown on the right) provide the convenience of a quick connect, without the restriction in flow.

Proper air supply is key to performance of any compressed air product.  If you want to know, at a glance, if you’re supplying it properly, install a pressure gauge right at (or as close as practical) to the inlet.  Any difference in its reading and your header pressure indicates a restriction.  Here’s a video that clearly shows how this all works:

I want to make sure you get the most out of your compressed air system.  If you want that to, give me a call with any questions you might have.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook