About Rotary Screw Air Compressors

Recently, EXAIR Application Engineers have written blogs about reciprocating type air compressors: Single Acting (by Lee Evans) and Dual Acting (by John Ball.) Today, I would like to introduce you, dear EXAIR blog reader, to another type: the Rotary Screw Air Compressor.

Like a reciprocating compressor, a rotary screw design uses a motor to turn a drive shaft. Where the reciprocating models use cams to move pistons back & forth to draw in air, compress it, and push it out under pressure, a rotary screw compressor’s drive shaft turns a screw (that looks an awful lot like a great big drill bit) whose threads are intermeshed with another counter-rotating screw. It draws air in at one end of the screw, and as it is forced through the decreasing spaces formed by the meshing threads, it’s compressed until it exits into the compressed air system.

Rotary Screw Air Compressor…how it works.

So…what are the pros & cons of rotary screw compressors?

Pros:

*Efficiency.  With no “down-stroke,” all the energy of the shaft rotation is used to compress air.

*Quiet operation.  Obviously, a simple shaft rotating makes a lot less noise than pistons going up & down inside cylinders.

*Higher volume, lower energy cost.  Again, with no “down-stroke,” the moving parts are always compressing air instead of spending half their time returning to the position where they’re ready to compress more air

*Suitable for continuous operation.  The process of compression is one smooth, continuous motion.

*Availability of most efficient control of output via a variable frequency drive motor.

*They operate on the exact same principle as a supercharger on a high performance sports car (not a “pro” strictly speaking from an operation sense, but pretty cool nonetheless.)

Cons:

*Purchase cost.  They tend to run a little more expensive than a similarly rated reciprocating compressor.  Or more than a little, depending on options that can lower operating costs.  Actually, this is only a “con” if you ignore the fact that, if you shop right, you do indeed get what you pay for.

*Not ideal for intermittent loads.  Stopping & starting a rotary screw compressor might be about the worst thing you can do to it.  Except for slacking on maintenance.  And speaking of which:

*Degree of maintenance.  Most maintenance on a reciprocating compressor is fairly straightforward (think “put the new part in the same way the old one came out.”)  Working on a rotary screw compressor often involves reassembly & alignment of internal parts to precision tolerances…something better suited to the professionals, and they don’t work cheap.

Like anything else, there are important factors to take under consideration when deciding which type of air compressor is most suitable for your needs.  At EXAIR, we always recommend consulting a reputable air compressor dealer in your area, helping them fully understand your needs, and selecting the one that fits your operation and budget.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Super Air Knife Plumbing Kit Allows Installation In Tight Quarters

I recently had the pleasure of helping a long-time user of our Super Air Knives with a challenging application. They already use quite a few of our Model 110012SS 12″ Stainless Steel Super Air Knives to clean & dry their nonwoven material as it’s being rolled for packaging. They like them because they’re quiet and efficient, but also because they’re durable…this particular product off-gasses a mildly corrosive vapor, which used to corrode other equipment in the area. Not only does the Stainless Steel Super Air Knife resist corrosion itself, the air flow keeps these vapors contained. Two birds, one stone.

They have a new product…same kind of material, but much wider…that needed to be blown off, and the identified the Model 110060SS 60″ Stainless Steel Super Air Knife as a “no-brainer” solution. Thing is, it had to be a pretty even air flow across the length, and a 60″ Super Air Knife has to get air to four ports across its length for optimal performance. And, they wanted to install it at a point where it would serve not only as a blow off, but as a vapor barrier, just like the 12″ Super Air Knives they’re already so fond of. The space was a little limited, though, so they opted for the Model 110060SSPKI 60″ Stainless Steel Super Air Knife with Plumbing Kit Installed, which allowed them to simply run an air supply line to both ends.

EXAIR SS Super Air Knives can be ordered with a Plumbing Kit installed, or you can easily install a Plumbing Kit on your existing Super Air Knife.

If you want to find out more about an engineered solution for your compressed air application – cleaning, drying, vapor barrier, or all of the above – give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Intelligent Compressed Air: How to Develop a Pressure Profile

An important part of operating and maintaining a compressed air system is taking accurate pressure measurements at various points in the compressed air distribution system, and establishing a baseline and monitoring with data logging.  A Pressure Profile is a useful tool to understand and analyze the compressed air system and how it is functioning.

Pressure Profile 1
Sample Pressure Profile

The profile is generated by taking pressure measurements at the various key locations in the system.  The graph begins with the compressor and its range of operating pressures, and continues through the system down to the regulated points of use, such as Air Knives or Safety Air Guns.  It is important to take the measurements simultaneously to get the most accurate data, and typically, the most valuable data is collected during peak usage periods.

By reviewing the Pressure Profile, the areas of greatest drop can be determined and the impact on any potential low pressure issues at the point of use.  As the above example shows, to get a reliable 75 PSIG supply pressure for a device or tool, 105-115 PSIG must be generated, (30-40 PSIG above the required point of use pressure.)  As a rule of thumb, for every 10 PSIG of compressed air generation increase the energy costs increase 5-7.5%

By developing a total understanding of the compressed air system, including the use of tools such as the Pressure Profile, steps to best maximize the performance while reducing costs can be performed.

If you have questions about getting the most from your compressed air system, or would like to talk about any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Proper Supply Lines are Key to Air Knife Performance

A few weeks back I chatted with a customer on an Air Knife application where they were using our 48″ aluminum Super Air Knife to remove leftover dough from a baking pan. The knife was working somewhat, but they were seeing some residual dough being left in certain areas on the pans due to what they perceived as “weak” airflow. After reading through our catalog and installation guide, they noticed that there were available shim sets that would allow them to increase the gap setting to get more force and flow out of the knife.

Available in lengths from 3″ to 108″ in aluminum, 303ss or 316ss construction

Our aluminum Super Air Knives are shipped from stock with a .002″ shim installed. The optional shim set includes a .001″, .003″ and .004″ shim that would allow you to decrease or increase the performance. By operating the Super Air Knife with the .003″ shim installed, this would increase the force and flow by 1.5 times and using the .004″ shim would double the performance. Sometimes achieving greater force and flow may be required but with the customer saying they were seeing weak airflow, it seemed there may be a restriction on the supply side.

Super Air Knife with Shim Set

I asked the customer how the knife was plumbed and what size supply lines he was using. He advised that they were plumbing air to all 3 inlets on the bottom of the knife but they were using 3/4″ hose with a run of about 30′. I advised the customer that plumbing air to all 3 inlets is required for a 48″ Super Air Knife but we actually recommend 3/4″ Schedule 40 Pipe up to 10′ or 1″ pipe up to 50′. If using hose, he would need to go up a size to maintain a large enough ID to carry the volume required for the unit. In his case, since the length of the supply is close to 30′, he would need to use 1-1/4″ ID hose.

Improper plumbing line size is a common issue we deal with here at EXAIR. Using undersized supply lines can cause excessive pressure drops because they aren’t able to carry the volume of air necessary to properly supply the compressed air device. In this particular application, if the customer were to install either the .003″ or .004″ shim, while keeping his current plumbing size, the performance would actually be worse as now the lines are even more undersized due to the increased air volume requirement from the larger Super Air Knife gap.

If you are looking to change the performance with one of our Air Knives or if you would like to discuss a particular application or product, please contact one of our application engineers for assistance at 800-903-9247.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

Proper Supply Line Size And Fittings Provide Peak Performance

Many times when we provide the air consumption of an EXAIR product, we get a response like…. “I’ve got plenty of pressure, we run at around 100 PSIG”. While having the correct pressure available is important, it doesn’t make up for the volume requirement or SCFM (Standard Cubic Feet per Minute) needed to maintain that pressure. We commonly reference trying to supply water to a fire hose with a garden hose, it is the same principle, in regards to compressed air.

When looking to maintain an efficient compressed air system, it’s important that you use properly sized supply lines and fittings to  support the air demand (SCFM) of the point-of-use device. The smaller the ID and the longer the length of run, it becomes more difficult for the air to travel through the system. Undersized supply lines or piping can sometimes be the biggest culprit in a compressed air system as they can lead to severe pressure drops or the loss of pressure from the compressor to the end use product.

Take for example our 18″ Super Air Knife. A 18″ Super Air Knife will consume 52.2 SCFM at 80 PSIG. We recommend using 1/2″ Schedule 40 pipe up to 10′ or 3/4″ pipe up to 50′. The reason you need to increase the pipe size after 10′ of run is that 1/2″ pipe can flow close to 100 SCFM up to 10′ but for a 50′ length it can only flow 42 SCFM. On the other hand, 3/4″ pipe is able to flow 100 SCFM up to 50′ so this will allow you to carry the volume needed to the inlet of the knife, without losing pressure through the line.

Pipe size chart for the Super Air Knife

We also explain how performance can be negatively affected by improper plumbing in the following short video:

 

Another problem area is using restrictive fittings, like quick disconnects. While this may be useful with common everyday pneumatic tools, like an impact wrench or nail gun, they can severely limit the volumetric flow to a device requiring more air , like a longer length air knife.

1/4″ Quick Connect

For example, looking at the above 1/4″ quick disconnect, the ID of the fitting is much smaller than the NPT connection size. In this case, it is measuring close to .192″. If you were using a device like our Super Air Knife that features 1/4″ FNPT inlets, even though you are providing the correct thread size, the small inside diameter of the quick disconnect causes too much of a restriction for the volume (SCFM) required to properly support the knife, resulting in a pressure drop through the line, reducing the overall performance.

If you have any questions about compressed air applications or supply lines, please contact one of our application engineers for assistance.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

Proper Plumbing Means Proper Performance

36″ Aluminum Super Air Knife being used in a monofilament extrusion line

An EXAIR customer recently contacted me about the application shown above, using an aluminum Super Air Knife model 110036 as a component to a blow off application in a monofilament extrusion line.  The extrusions from this line are used in one of the end user’s main product lines, a personal health device used by over a billion people around the world.

The original problem of drying the extrusions can certainly be solved with the setup shown, but the output force from the knife was less than what the customer expected, and below the EXAIR published data.  We take great care in the collection and verification of our performance data, so this prompted a deeper dive into the application to determine what could be the cause.

Immediately upon seeing the application photos, there were two things which stood out.  The first was the angle of attack of the knife, and the second was the compressed air plumbing.  The angle of attack in the original setup was ~90°, nearly perpendicular to the extrusions passing through the airstream from the knife.  EXAIR always recommends an angle of attack of ~45° to increase time in contact between the airstream from the knife and the materials passing through the airstream.  Although a small adjustment, this angle significantly contributes to overall blow off performance.

5mm ID x 8mm OD tubing used to supply compressed air to the knife

But, the real issue with this application was in the compressed air supply.  The tubing for this knife was shown as having a 5mm ID and an 8mm OD, which will allow a compressed air flow of ~40 SCFM at 80 PSIG, maximum, without consideration to pipe length from the compressor.  The 36” aluminum Super Air Knife will require 104.4 SCFM at 80 PSIG operating pressure.  So, it was clear that there was a significant plumbing problem, leading to the reduced performance from the knife.

In order to prove this out, we first had to take a pressure reading directly at the knife.  When this was done, the operating pressure dropped from ~85 PSIG at the main header to less than 20 PSIG at the knife.  By taking this pressure reading directly at the knife we were able to gain valuable information as to the true operating pressure of the knife, which was far below what the customer expected, but which made perfect sense given the performance output.

The remedy in this case was to increase the size of the supply line to at least 15mm ID (approximately equivalent to a ½” schedule 40 line), and preferably to something in the range of 19-20mm (~a ¾” schedule 40 line).  Once this was done the knife operated flawlessly, and after adjusting the angle of attack this application was optimized for the best possible results.

Being able to find the source of the problem for this application was a great service to the customer.  Our engineers are well-versed in compressed air system requirements, and we’re available for help in your application if needed.  If you’d like to contact an EXAIR Application Engineer we can be reached by email, phone (1-800-903-9247), or Twitter.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Proper Air Supply Is Key To Optimal Performance

I recently worked with a customer who was using our 36″ aluminum Super Air Knife to remove dust and light debris from a conveyor but wasn’t seeing good performance. They initially called because they read in their catalog that increasing the shim gap would increase their force and flow and wanted to know what kind of increase in performance they would see.

The Super Air Knives are shipped from EXAIR with a .002″ shim installed and the performance data shown in the catalog reflects this gap setting. The shim sets, for aluminum knives, include a .001″, .003″ and .004″ shim and by changing to the .003″ shim, the force and flow would be 1.5 times as great and using the .004″ shim would double these amounts. While some applications do require the additional force and flow, trying to blow off dust or light materials typically wouldn’t fall into this category.

sak-shims
Replaceable shims provide varying levels of force and flow.

Switching our focus to the supply side of things, it turns out they were using 1/4″ hose and only plumbing one end of the unit. This poses 2 concerns that relate directly to the mentioned poor performance. The first would be the 1/4″ hose is severely undersized for a 36″ Super Air Knife. We recommend 3/4″ Schedule 40 pipe if the length of supply from a main header is 10′ or less and a 1″ pipe up to 50′ of supply run. It is possible to use hose but that hose needs to be at least 1″ ID to be able to carry enough volume to support a 36″ unit. Secondly, for knives that are 24″ in length or longer, you need to plumb air to both ends to maintain an even, laminar flow across the length of the knife.

With the proper supply, the Super Air Knife is going to produce an exhaust air velocity of 11,800 feet per minute when operated at 80 PSIG, which is more than enough to eject lightweight material from a flat surface (in fact you could most likely clean dust and light debris at a lower pressure). If the customer did increase the shim gap dimension, the increase in  air demand would only worsen the problem of undersized supply lines.

Pipe sizes
Recommended supply line sizes per the IOM – Installation and Operation Manual.

This is just one example of how proper supply line size and installation is key to achieving optimal performance. If you are experiencing similar issues or need any assistance with a product or application, give me a call, I am glad to help.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN