Proper Compressed Air Supply Plumbing Equals Success

EXAIR manufactures and stocks Super Air Knives in lengths ranging from 3”-108”. They’re designed to dramatically reduce compressed air usage when compared to similar blowoffs while still maximizing both force and flow. With an air entrainment ratio of 40:1, it’s the ideal solution for a variety of applications that necessitate a wide, laminar sheet of high velocity airflow.

I recently worked with a customer who makes wooden pallets. They were using a Model 110048 48” Super Air Knife to remove sawdust from the pallets prior to stacking them. When the grooves are cut into the pallet to accommodate the forks from a forklift or pallet-jack, there’s a good amount of sawdust that remains on the pallet. They would prefer to not have sawdust all over the finished pallets that they send to customers, so they looked towards a Super Air Knife to provide a curtain of air capable of removing that sawdust just prior to stacking them.

They purchased the Model 110048, but after installing it they didn’t get the level of force they had been hoping for. After some initial discussions, we identified that the issue lied with the plumbing of the air supplied to the knife. A 48” Super Air Knife will need to be fed with compressed air to (3) of the ¼ NPT air inlets. This ensures that an adequate volume of air is fed to the full length of the knife, keeping a consistent airflow.

Not only had they been plumbing compressed air to just (1) air inlet, but they were also using a restrictive quick-disconnect fitting. The I.D. of a quick connect fitting restricts the overall volume of air that can be passed through it. Length of the pipe or hose is also critical as the diameter of the pipe will need to be larger for longer runs or greater volumes. Accompanying any Super Air Knife is our Installation & Maintenance Guide which outlines the necessary requirements for each available length that we have available as well as how many air inlets need to be supplied with compressed air.

SAK pipe sizing

To confirm that air supply was the issue, they installed a pressure gauge directly at the air inlet to the knife. Line pressure was around 90 PSIG, but when they opened the valve and supplied air to the knife the pressure gauge dropped all the way to 35 PSIG. We’ve talked about pressure drop before here on the EXAIR Blog, the only way to confirm this is to take a pressure reading directly at the air inlet.

They removed the quick disconnect fitting, increased to a 1/2″ supply hose in place of 1/4″, and plumbed compressed air to each end and the center air inlet. On all Super Air Knives, compressed air inlets are available on either end as well as on the bottom. After fixing their plumbing, they noticed a dramatic increase in both force and flow and the pressure directly at the air inlet increased to 85 PSIG. The sawdust was easily blown off of the pallets and the customer was pleased that their pallets were free of sawdust.

sak pallet

At EXAIR, we stand by our products with the Unconditional 30 Day Guarantee. If you’ve just purchased a new product and aren’t seeing the results that you were hoping for give us a call. Our highly-trained team of Application Engineers is ready and standing by to investigate the application and provide support to help make sure you’re getting the most out of our products. Most of the times the solution is simple, but we won’t be satisfied until we find a resolution!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Understanding Compressed Air Supply Piping

An important component of your compressed air system is the supply piping. The piping will be the middle man that connects your entire facility to the compressor. Before installing pipe, it is important to consider how the compressed air will be consumed at the point of use.  You’ll also need to consider the types of fittings you’ll use, the size of the distribution piping, and whether you plan to add additional equipment in the next few years. If so, it is important that the system is designed to accommodate any potential expansion. This also helps to compensate for potential scale build-up (depending on the material of construction) that will restrict airflow through the pipe.

Air Compressor
Air Compressor and Storage Tanks

The first thing you’ll need to do is determine your air compressor’s maximum CFM and the necessary operating pressure for your point of use products. Keep in mind, operating at a lower pressure can dramatically reduce overall operating costs. Depending on a variety of factors (elevation, temperature, relative humidity) this can be different than what is listed on directly on the compressor. (For a discussion of how this impacts the capacity of your compressor, check out one of our previous blogs – Intelligent Compressed Air: SCFM, ACFM, ICFM, CFM – What do these terms mean?)

Once you’ve determined your compressor’s maximum CFM, draw a schematic of the necessary piping and list out the length of each straight pipe run. Determine the total length of pipe needed for the system. Using a graph or chart, such as this one from Engineering Toolbox. Locate your compressor’s capacity on the y-axis and the required operating pressure along the x-axis. The point at which these values meet will be the recommended MINIMUM pipe size. If you plan on future expansion, now is a good time to move up to the next pipe size to avoid any potential headache.

After determining the appropriate pipe size, you’ll need to consider how everything will begin to fit together. According to the Best Practices for Compressed Air Systems from the Compressed Air Challenge, the air should enter the compressed air header at a 45° angle, in the direction of flow and always through wide-radius elbows. A sharp angle anywhere in the piping system will result in an unnecessary pressure drop. When the air must make a sharp turn, it is forced to slow down. This causes turbulence within the pipe as the air slams into the insides of the pipe and wastes energy. A 90° bend can cause as much as 3-5 psi of pressure loss. Replacing 90° bends with 45° bends instead eliminates unnecessary pressure loss across the system.

Pressure drop through the pipe is caused by the friction of the air mass making contact with the inside walls of the pipe. This is a function of the volume of flow through the pipe. Larger diameter pipes will result in a lower pressure drop, and vice versa for smaller diameter pipes. The chart below from the Compressed Air and Gas Institute Handbook provides the pressure drop that can be expected at varying CFM for 2”, 3”, and 4” ID pipe.

ccfdfcfdddfcvgdsdfzxcv.png
Air Pressure Drop

To discuss your application and how an EXAIR Intelligent Compressed Air Product can help your process, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

Images Courtesy of  the Compressed Air Challenge and thomasjackson1345 Creative Commons.

Super Air Knife Plumbing Kits Ensure Proper and Optimum Operation

The EXAIR Super Air Knife is a Highly Engineered and intelligently designed point of use compressed air powered device that delivers a 40:1 air amplification ratio!  This simply means that for every one part compressed air supplied to an EXAIR Super Air Knife it will entrain 40 parts ambient air into the exiting compressed air stream.  Almost as good as “money for nothing”!  Also the EXAIR Super Air Knife is designed to provide an even or “laminar” flow of air.  This is due to it being an intelligent, highly engineered compressed air product.

However if an EXAIR Super Air Knife is not connected to the compressed air supply with the appropriate number of inlet ports being fed, poor and/or erratic performance is likely.  This would manifest itself as uneven air flow and lower performance from the air knife.  In order to make this plumbing easier we offer optional plumbing kits for all Super Air Knives starting with the 24″ length all the way up to the 108″!  The 24″ and longer Super Air Knive’s require that compressed air must be supplied to multiple air inlets along its length for optimal performance.  This will ensure that the air flow is laminar and the force is even across the entire length of the Super Air Knife.  All our products are shipped with an installation guide referencing the proper recommended pipe sizes for various lengths of supply pipe.

The Plumbing Kits for Aluminum Super Air Knives provide properly sized Nitrile/PVC Hoses, Brass Fittings and a Pressure Gauge which monitors the inlet pressure to the air knife.  If the gauge shows a pressure drop when the Super Air Knife is turned on this indicates that there is an air starvation issue.  For the 303SS, 316SS and PVDF Air Knives the Plumbing Kits contain 5/8 OD SS tubing X .034 wall thickness tubing and SS fittings.

AirKnifePlumbing

So when ordering your next Super Air Knife be sure to designate the Plumbing Kit to ease your installation and to ensure top performance.

When you are looking for expert advice on safe, quiet and efficient point of use compressed air products give us a call.   We would enjoy hearing from you!

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

A Review of Centrifugal Air Compressors

Over the last few months, my EXAIR colleagues and I have blogged about several different types of air compressor types including single and double acting reciprocating, rotary screw, sliding vane and rotary-scroll air compressors. You can click on the links above to check those out. Today, we will examine centrifugal air compressors.

The types of compressors that we have looked at to date have been of the Positive Displacement type.  For this type, an amount of air is drawn in and trapped in the compression area, and the volume in which it is held is mechanically reduced, resulting is rise in pressure as it approaches the discharge point.

types of compressors

The centrifugal air compressors fall under the Dynamic type. A dynamic compressor operates through the principle that a continuous flow of air has its velocity raised in an impeller rotating at a relatively high speed (can exceed 50,000 rpm.) The air has an increase in its kinetic energy (due to the rise in velocity) and then the kinetic energy is transformed to pressure energy in a diffuser and/or a volute chamber. The volute is a curved funnel that increases in area as it approaches the discharge port. The volute converts the kinetic energy into pressure by reducing speed while increasing pressure. About one half of the energy is developed in the impeller and the other half in the diffuser and volute.

Centrifugal Compressor
Centrifugal Compressor Components

The most common centrifugal air compressor has two to four stages to generate pressures of 100 to 150 PSIG.  A water cooled inter-cooler and separator between each stage removes condensation and cools the air prior to entering the next stage.

Some advantages of the Centrifugal Air Compressor-

  • Comes completely packaged fort plant air up to 1500 hp
  • As size increases, relative initial costs decrease
  • Provides lubricant-free air
  • No special foundation required

A few disadvantages-

  • Higher initial investment costs
  • Has specialized maintenance requirements
  • Requires unloading for operation at reduced operational capacities

EXAIR recommends consulting with a reputable air compressor dealer in your area, to fully review all of the parameters associated with the selection and installation of a compressed air system.

If you would like to talk about air compressors or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

 

 

Rotary Scroll-Type Compressor

Over the last few months, my EXAIR colleagues and I have blogged about several different types of air compressor types including single and double acting reciprocating, rotary screw and sliding vane air compressors. You can click on the links above to check those out. Today, I will review the basics of the rotary scroll-type compressor.

The rotary scroll type compressor falls under the positive displacement-type, the same as the other types previously discussed.  A positive displacement type operates under the premise that a given quantity of air is taken in, trapped in a compression chamber and the physical space of the chamber is mechanically reduced.  When a given amount of air occupies a smaller volume, the pressure of the air increases.

Each of the previous positive displacement type compressors use a different mechanism for the reduction in size of the compression chamber. The rotary scroll uses two inter-meshing scrolls, that are spiral in shape. One of the scrolls is fixed, and does not move (in red).  The other scroll (in black) has an “orbit” type of motion, relative to the fixed scroll. In the below simulation, air would be drawn in from the left, and as it flows clockwise through the scroll, the area is reduced until the air is discharged at a high pressure at the center.

Two_moving_spirals_scroll_pump
How it Works- A fixed scroll (red), and an ‘orbiting’ scroll (black) work to compress the air

It is of note that the flow from start to finish is continuous, providing air delivery that is steady in pressure and flow, with little or no pulsation.

There is no metal to metal sliding contact, so lubrication is not needed.  A drawback to an oil free operation is that oil lubrication tends to reduce the heat of compression and without it, the efficiency of scroll compressors is less than that of lubricated types.

The advantages of the rotary scroll type compressor include:

  • Comes as a complete package
  • Comparatively efficient operation
  • Can be lubricant-free
  • Quiet operation
  • Air cooled

The main disadvantage:

  • A limited range of capacities is available, with low output flows

EXAIR recommends consulting with a reputable air compressor dealer in your area, to fully review all of the parameters associated with the selection and installation of a compressed air system.

If you would like to talk about compressed air or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Rotary Scroll GIF:  used from of Public Domain

Oil Removal Filters – Keeping Compressed Air Clean

Compressed air filters help to keep the air clean and condensate free to protect equipment from dust, dirt, pipe scale, oil and water. Even though the compressed air system will typically have a main dryer, additional treatment is often necessary. For this discussion, we will focus on the oil removal process and filter type.

After the compressed air has passed through a particulate filter, the dirt, dust and water droplets have been removed.  Oil that is present is much smaller in size, and mostly passes though the particulate filter.  The installation of a coalescing filter will provide for the removal of the majority of the fine oil aerosols that remain. The coalescing filter works differently than the particulate filters. The compressed air flows from inside to outside through the coalescing filter media. The term ‘coalesce’ means to ‘come together’ or ‘form one mass.’  The process of coalescing filtration is a continuous process where the small aerosols of oil come in contact with fibers of the filter media. As other aerosols are collected, they will join up and ‘come together’ and grow to become an oil droplet, on the downstream or outside surface of the media.  Gravity will then cause the droplet to drain away and fall off the filter element.

9005
Example of a 0.03 Micron Coalescing Oil Removal Filter

Some important information to keep in mind –

  • Change the filter regularly, not just when the differential pressures exceeds recommended limits, typically 5 PSI
  • Coalescing filters will remove solids too, at a higher capture rate due to the fine level of filtration, using a pre-filter for solids will extend the life
  • Oil free compressors do not provide oil free air, as the atmospheric air drawn in for compression contains oil vapors that will cool and condense in the compressed air system.

If you would like to talk about oil removal filters or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Line Loss: What It Means To Your Compressed Air Supply Pipe, Tubing, And Hose

“Leave the gun. Take the canolli.”

“What we’ve got here is failure to communicate.”

“I’ll get you my pretty, and your little dog too!”

“This EXAIR 42 inch Super Air Knife has ¼ NPT ports, but the Installation and Operation Instructions recommend feeding it with, at a minimum, a ¾ inch pipe…”

If you’re a movie buff like me, you probably recognize 75% of those quotes from famous movies. The OTHER one, dear reader, is from a production that strikes at the heart of this blog, and we’ll watch it soon enough. But first…

It is indeed a common question, especially with our Air Knives: if they have 1/4 NPT ports, why is such a large infeed supply pipe needed?  It all comes down to friction, which slows the velocity of the fluid all by itself, and also causes turbulence, which further hampers the flow.  This means you won’t have as much pressure at the end of the line as you do at the start, and the longer the line, the greater this drop will be.

This is from the Installation & Operation Guide that ships with your Super Air Knife. It’s also available from our PDF Library (registration required.)

If you want to do the math, here’s the empirical formula.  Like all good scientific work, it’s in metric units, so you may have to use some unit conversions, which I’ve put below, in blue (you’re welcome):

dp = 7.57 q1.85 L 104 / (d5 p)

where:

dp = pressure drop (kg/cm2) 1 kg/cm2=14.22psi

q = air volume flow at atmospheric conditions (FAD, or ‘free air delivery’) (m3/min) 1 m3/min = 35.31 CFM

L = length of pipe (m) 1m = 3.28ft

d = inside diameter of pipe (mm) 1mm = 0.039”

p = initial pressure – abs (kg/cm2) 1 kg/cm2=14.22psi

Let’s solve a problem:  What’s the pressure drop going to be from a header @80psig, through 10ft of 1″ pipe, feeding a Model 110084 84″ Aluminum Super Air Knife (243.6 SCFM compressed air consumption @80psig)…so…

q = 243.6 SCFM, or 6.9 m3/min

L = 10ft, or 3.0 m

d = 1″, or 25.6 mm

p = 80psig, or 94.7psia, or 6.7 kg/cm2

1.5 psi is a perfectly acceptable drop…but what if the pipe was actually 50 feet long?

Again, 1.5 psi isn’t bad at all.  8.2 psi, however, is going to be noticeable.  That’s why we’re going to recommend a 1-1/4″ pipe for this length (d=1.25″, or 32.1 mm):

I’m feeling much better now!  Oh, I said we were going to watch a movie earlier…here it is:

If you have questions about compressed air, we’re eager to hear them.   Call us.

Russ Bowman
Application Engineer
Find us on the Web 
Follow me on Twitter 
Like us on Facebook