Supply Side Review: Heat of Compression-Type Dryers

The supply side of a compressed air system has many critical parts that factor in to how well the system operates and how easily it can be maintained.   Dryers for the compressed air play a key role within the supply side are available in many form factors and fitments.  Today we will discuss heat of compression-type dryers.

Heat of compression-type dryer- Twin Tower Version

Heat of compression-type dryers are a regenerative desiccant dryer that take the heat from the act of compression to regenerate the desiccant.  By using this cycle they are grouped as a heat reactivated dryer rather than membrane technology, deliquescent type, or refrigerant type dryers.   They are also manufactured into two separate types.

The single vessel-type heat of compression-type dryer offers a no cycling action in order to provide continuous drying of throughput air.  The drying process is performed within a single pressure vessel with a rotating desiccant drum.  The vessel is divided into two air streams, one is a portion of air taken straight off the hot air exhaust from the air compressor which is used to provide the heat to dry the desiccant. The second air stream is the remainder of the air compressor output after it has been processed through the after-cooler. This same air stream passes through the drying section within the rotating desiccant drum where the air is then dried.  The hot air stream that was used for regeneration passes through a cooler just before it gets reintroduced to the main air stream all before entering the desiccant bed.  The air exits from the desiccant bed and is passed on to the next point in the supply side before distribution to the demand side of the system.

The  twin tower heat of compression-type dryer operates on the same theory and has a slightly different process.  This system divides the air process into two separate towers.  There is a saturated tower (vessel) that holds all of the desiccant.  This desiccant is regenerated by all of the hot air leaving the compressor discharge.  The total flow of compressed air then flows through an after-cooler before entering the second tower (vessel) which dries the air and then passes the air flow to the next stage within the supply side to then be distributed to the demand side of the system.

The heat of compression-type dryers do require a large amount of heat and escalated temperatures in order to successfully perform the regeneration of the desiccant.  Due to this they are mainly observed being used on systems which are based on a lubricant-free rotary screw compressor or a centrifugal compressor.

No matter the type of dryer your system has in place, EXAIR still recommends to place a redundant point of use filter on the demand side of the system.  This helps to reduce contamination from piping, collection during dryer down time, and acts as a fail safe to protect your process.  If you would like to discuss supply side or demand side factors of your compressed air system please contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

Heat of compression image: Compressed Air Challenge: Drive down your energy costs with heat of compression recovery: https://www.plantservices.com/articles/2013/03-heat-of-compression-recovery/

 

About Rotary Scroll Compressors

The Rotary Scroll compressor is a popular style compressor and is used primarily for air conditioning refrigerant systems.  Recently, since it is very efficient, quiet and reliable it has been adopted by industrial air compressor manufacturer’s to expand their product offering for their smaller, high-efficiency product line.

They operate on the principle of two intermeshing spirals or scrolls with one being stationary while the other rotates or orbits in relation to it.  They are mounted with 180° phase displacement between them which forms air pockets having different volumes.  Air enters through the inlet port located in the rotating/orbiting scroll which fills the chambers and as is moved along and compressed along the scroll surfaces.

scroll compressor finalSome of the key advantages of a Rotary Scroll Compressor are:

  • Pulsation free delivery due to the continuous flow from the suction port to the outlet port.
  • No metal to metal contact thereby eliminating the need for lubrication
  • Low noise levels
  • Fewer moving parts means less maintenance
  • Energy Efficient
  • Air cooled

The largest disadvantage is they are available in a limited range of sizes and the largest SCFM outputs are around 100 SCFM.

This is exactly where EXAIR shines, we offer 15 product lines of highly efficient & quiet point of use compressed air products and accessories to compliment their limited output volume of air.  All EXAIR products are designed to use compressed air efficiently and quietly, many of which reduce the demand on your air compressor which will help control utility costs and possibly delay the need to add additional compressed air capacity.

As an example, EXAIR’s Super Air Knives deliver exceptional efficiency by entraining ambient air at ratios of up to 40:1 and they are able to deliver an even laminar flow of air ranging from a gentle breeze to exceptionally hard-hitting force.

Super Air Knife
EXAIR’s Super Air Knife entrains ambient air at a 40:1 ratio!

EXAIR’s Super Air Amplifiers are able to entrain ambient air at ratio’s up to 25:1.  The model 120024 – 4″ Super Air Amplifier developes output volumes up to 2,190 SCFM while consuming only 29.2 SCFM of compressed air @ 80 PSI which can easily be operated on a 100 SCFM output compressor.

Super Air Amplifier
EXAIR Air Amplifiers use a small amount of compressed air to create a tremendous amount of air flow.

For your blow off needs EXAIR’s Super Air Nozzle lineup has an offering that will fit nearly any need or application you may have.  Nozzles are available in sizes from M4 x 0.5 to  1 1/4 NPT and forces that range from 2 ounces of force up to 23 Lbs at 12″ from the discharge.  We offer sixty two nozzles that could all be operated easily from the limited discharge or a rotary scroll compressor.

nozzlescascadeosha
Family of Nozzles

If you need to reduce your compressed air consumption or you are looking for expert advice on safe, quiet and efficient point of use compressed air products give us a call.  We would enjoy hearing from you!

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

 

Rotary Scroll-Type Compressor

Over the last few months, my EXAIR colleagues and I have blogged about several different types of air compressor types including single and double acting reciprocating, rotary screw and sliding vane air compressors. You can click on the links above to check those out. Today, I will review the basics of the rotary scroll-type compressor.

The rotary scroll type compressor falls under the positive displacement-type, the same as the other types previously discussed.  A positive displacement type operates under the premise that a given quantity of air is taken in, trapped in a compression chamber and the physical space of the chamber is mechanically reduced.  When a given amount of air occupies a smaller volume, the pressure of the air increases.

Each of the previous positive displacement type compressors use a different mechanism for the reduction in size of the compression chamber. The rotary scroll uses two inter-meshing scrolls, that are spiral in shape. One of the scrolls is fixed, and does not move (in red).  The other scroll (in black) has an “orbit” type of motion, relative to the fixed scroll. In the below simulation, air would be drawn in from the left, and as it flows clockwise through the scroll, the area is reduced until the air is discharged at a high pressure at the center.

Two_moving_spirals_scroll_pump
How it Works- A fixed scroll (red), and an ‘orbiting’ scroll (black) work to compress the air

It is of note that the flow from start to finish is continuous, providing air delivery that is steady in pressure and flow, with little or no pulsation.

There is no metal to metal sliding contact, so lubrication is not needed.  A drawback to an oil free operation is that oil lubrication tends to reduce the heat of compression and without it, the efficiency of scroll compressors is less than that of lubricated types.

The advantages of the rotary scroll type compressor include:

  • Comes as a complete package
  • Comparatively efficient operation
  • Can be lubricant-free
  • Quiet operation
  • Air cooled

The main disadvantage:

  • A limited range of capacities is available, with low output flows

EXAIR recommends consulting with a reputable air compressor dealer in your area, to fully review all of the parameters associated with the selection and installation of a compressed air system.

If you would like to talk about compressed air or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Rotary Scroll GIF:  used from of Public Domain

About Rotary Screw Air Compressors

Recently, EXAIR Application Engineers have written blogs about reciprocating type air compressors: Single Acting (by Lee Evans) and Dual Acting (by John Ball.) Today, I would like to introduce you, dear EXAIR blog reader, to another type: the Rotary Screw Air Compressor.

Like a reciprocating compressor, a rotary screw design uses a motor to turn a drive shaft. Where the reciprocating models use cams to move pistons back & forth to draw in air, compress it, and push it out under pressure, a rotary screw compressor’s drive shaft turns a screw (that looks an awful lot like a great big drill bit) whose threads are intermeshed with another counter-rotating screw. It draws air in at one end of the screw, and as it is forced through the decreasing spaces formed by the meshing threads, it’s compressed until it exits into the compressed air system.

Rotary Screw Air Compressor…how it works.

So…what are the pros & cons of rotary screw compressors?

Pros:

*Efficiency.  With no “down-stroke,” all the energy of the shaft rotation is used to compress air.

*Quiet operation.  Obviously, a simple shaft rotating makes a lot less noise than pistons going up & down inside cylinders.

*Higher volume, lower energy cost.  Again, with no “down-stroke,” the moving parts are always compressing air instead of spending half their time returning to the position where they’re ready to compress more air

*Suitable for continuous operation.  The process of compression is one smooth, continuous motion.

*Availability of most efficient control of output via a variable frequency drive motor.

*They operate on the exact same principle as a supercharger on a high performance sports car (not a “pro” strictly speaking from an operation sense, but pretty cool nonetheless.)

Cons:

*Purchase cost.  They tend to run a little more expensive than a similarly rated reciprocating compressor.  Or more than a little, depending on options that can lower operating costs.  Actually, this is only a “con” if you ignore the fact that, if you shop right, you do indeed get what you pay for.

*Not ideal for intermittent loads.  Stopping & starting a rotary screw compressor might be about the worst thing you can do to it.  Except for slacking on maintenance.  And speaking of which:

*Degree of maintenance.  Most maintenance on a reciprocating compressor is fairly straightforward (think “put the new part in the same way the old one came out.”)  Working on a rotary screw compressor often involves reassembly & alignment of internal parts to precision tolerances…something better suited to the professionals, and they don’t work cheap.

Like anything else, there are important factors to take under consideration when deciding which type of air compressor is most suitable for your needs.  At EXAIR, we always recommend consulting a reputable air compressor dealer in your area, helping them fully understand your needs, and selecting the one that fits your operation and budget.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook