So Many Holes

I remember the book and movie about a young teenager who gets sent to a prison/ work camp that all they do is dig holes. Yeah, there’s a much deeper story line there and that isn’t the point of this blog. The point is, that movie is all I thought of when I encountered this customer’s nozzle solution. Their ejector nozzle on a recycling conveyor was using too much air and was too noisy.

Upon receiving the nozzle to do a free EXAIR Efficiency Lab, we were absolutely amazed at the level of care taken to make something like this. The nozzle was purpose built and definitely got the job done, it also drained their compressed air system at times and made a lot of noise while it did the work. So what did this nozzle look like, now keep in mind, this was not the customer’s design, it was a solution from the machine manufacturer.

For an idea, the customer nozzle was a 3″ overall length, and had a total of 162 holes in it. There were two inlets for 3/8″ push to connect tubing. The holes were very cleanly drilled and we used a discharge through orifice chart to estimate the consumption before testing. Operating pressure were tested at 80 psig inlet pressure.

Discharge through an orifice table.

Our estimations were taken from the table above. We used a pin gauge to determine the hole size and it came close to a 1/32″ diameter. With the table below we selected the 1.34 CFM per hole and used a 0.61 multiplier as the holes appeared to have crisp edges.

Estimation Calculation

Then, we went to our lab and tested. The volumetric flow came out to be measured at 130.71 SCFM. This reassured us that our level of estimation is correct. We then measured the noise level at 95.3 dBA from 3′ away. Lastly, we tested what could replace the nozzle and came up with a 3″ Super Air Knife with a .004″ thick shim installed. To reach this solution we actually tested in a similar setup to the customer’s for functionality as they sent us some of their material.

Now for the savings, since this customer was focused on air savings, that’s what we focused on. The 3″ Super Air Knife w/ .004″ thick shim installed utilizes 5.8 SCFM per inch of knife length when operated at 80 psig inlet pressure. So the consumption looks like below

That’s an astounding amount of air saved for each nozzle that is replaced on this line. The line has 4 nozzles that they want to immediately change out. For a single nozzle, the savings and simple ROI looks like the table below.

Air Savings / Simple ROI

That’s right, they will save 115.02 SCFM per minute of operation. These units operate for seconds at a time so the amount of actual savings is still to be determined after a time study. In videos shared, there was not many seconds out of a minute where one of the four nozzles was not activated. Once the final operation per minute is received we can rework our calculations and see how many hours of line operation it will take to pay back each knife purchase.

If you have any point of use blowoff or part ejection and even have a “nice looking” blowoff in place, don’t hesitate to reach out. These are still very different from our Engineered Solutions. We will help you as much as we can and provide test data, pictures, and even video of testing when possible.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

“It’s Not Rocket Science”, or How Compressed Air Has Straightforward Applications In Aerospace

On the submarine I served on, many of us used math, specific to our jobs. Torpedo (and missile) fire control, navigation, reactor operations…even meal cooking…involved certain formulas to accomplish particular tasks. One formula we all knew and kept near & dear to our hearts, though, was:

Number of surfaces = Number of dives

And those who fly aircraft and spacecraft, in – and out of – the atmosphere, have a similar formula:

Number of landings = Number of takeoffs

While this certainly requires a great deal of skill of the operators (as does diving and surfacing a submarine), it also takes a great deal of technical acumen in the engineering and construction of those aircraft & spacecraft (and warships). Terms like “aircraft grade” inspire a high degree of confidence in the integrity of materials, and rightly so – the quality standards that manufacturers and suppliers are held accountable to are stringent and inviolate. That’s why aerospace professionals need reliable, durable, and effective equipment to do their jobs.

EXAIR Corporation has been providing this kind of equipment to the aerospace industry (and others) since 1983. Here are some examples of the applications we’ve worked with “steely eyed missile men” to solve:

  • A jet engine manufacturer makes a titanium assembly consisting of a honeycomb shaped extrusion bonded to a rigid sheet. The cells of the honeycomb are only 1/8” wide, and 3/8” deep. After fabrication, they’re washed & rinsed, and the tiny cells tend to hold water. They would invert & tap the assembly to try to get the water out, but that wasn’t always effective and occasionally led to damaging the assembly. To reduce the chance of damage (and loss) of an assembly, they built a cleaning station, using EXAIR Model HP1125 2” High Power Super Air Nozzles and Model 9040 Foot Pedals, for hands-free control of the high force blow out of the honeycomb cells. The results were increased production, decreased defects, and lower labor costs.
  • A machine shop makes composite material parts for the aerospace industry. Static charge would build up, causing the shavings to cling to most of the surfaces inside the machine. The vacuum system was unable to overcome the force of the static charge to remove it, so they called EXAIR. Our expertise in static elimination led to the specification of a Model 8494 Gen4 Stay Set Ion Air Jet System to direct ionized air onto the tool during cutting. This eliminated the static as it was generated on the shavings, allowing the vacuum system to perform as advertised. Not only did it make for a cleaner work station, the air flow provided cooling for the cutting tool, improving performance & extending life.
  • If a company works with metal parts, there’s a decent chance they operate a welding machine, and those things make smoke & fumes that, at best, are a nuisance, and at worst, are toxic. An airplane repair shop that has to weld in tight spaces needed a convenient, portable, compact way to evacuate the welding smoke and fumes. They chose a Model 120024 4” Super Air Amplifier. They’re capable of pulling in over 700 SCFM, and with a sound level of only 73dBA and lightweight aluminum construction, they’re an ideal fit for this application.
  • Certain satellites have components whose batteries must be fully charged to ensure that everything works just right. Because of the heat that charging generates, they couldn’t be charged with the spacecraft on the launch pad without cooling. Conventional methods of providing cold air (refrigerant based or cold water chillers) are too bulky, so they instead use a Model 3230 Medium Vortex Tube, capable of providing 2,000 Btu/hr worth of cooling air flow. This enables them to charge the battery until just prior to launch, making sure the batteries are as fully charged as possible, prior to deployment.
  • While the lion’s share of Vortex Tube applications involve the use of their cold flow, a number of folks do use the hot air flow, with great success. A major material supplier to the aircraft & aerospace industry makes a flexible, porous strand of material that, after fabrication, passes through a wash tank prior to cutting to size. They wanted to speed up the drying time, but it was impractical to use electrically powered hot air blowers or heat guns. By using an EXAIR Model 3275 Large Vortex Tube set to a 70% Cold Fraction, they’re able to blow a little over 22 SCFM of 220°F air onto the strand, which effectively dries it to their specification, quickly & safely.
These are some of the EXAIR Intelligent Compressed Air Products used in the aerospace industry.

Exacting jobs call for safe, efficient, and reliable tools. Even if your job “isn’t rocket science”, the value of the right tool cannot be stressed enough. If you use – or want to use – compressed air for such a task, give me a call.

Russ Bowman, CCASS

Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

“Math Wall” image courtesy of João Trindade, Creative Commons License

Overheating Cabinets Are Bad. Cabinet Cooler Systems on Promotion Are Good!

In southwest Ohio we are currently experiencing 88°F. And we have begun to see increased numbers of inquiries for Cabinet Cooler Systems to keep control cabinets cool. This comes with the territory of approaching summer here in the northern hemisphere, and elsewhere it is due to new machines going into areas of a facility where it is constantly hot and dirty. It seems like the perfect time to offer up some free stuff with our Cabinet Cooler Promotion.

That’s right, order any of the Cabinet Cooler® Systems listed and receive a free A/C Sensor Pen. This pen has saved me from getting shocked many of times around my home.   Without it of course, I find myself guessing I turned the correct breaker off and, as soon as I touch the outlet I am working on I get hit with 110V. This sensor is helpful to locate the presence of voltage and avoid getting shocked.

We are here to assist your choice of Cabinet Cooler system and to provide a very fast solution to the downtime you are experiencing. We manufacture Cabinet Cooler systems from 275 Btu/Hr through 5600 Btu/Hr with NEMA 12, 4 and 4X integrity as well as Hazardous Location. If you don’t know what Cabinet Cooler System you need, take a look at our new Cabinet Cooler Calculator or the form below. It can be found on our site, get the information and call, fax, e-mail or live chat with an Application Engineer to get a quick and accurate response on what amount of cooling your system will need.

Sizing Guide

Over our thirty years in business we have also seen many companies who only experience a short span of seasonal heat and have found that 2000 Btu/Hr is enough refrigeration to offset summertime heat load, in most cases. Choosing a model with a thermostat control will turn the cooler on and off as needed and minimize compressed air use. Cabinet Cooler systems are in STOCK and ship same day for domestic and Canadian orders received by 3:00 pm EDT. We can get your cabinet cooled FAST and eliminate your heat related problems. Cabinet Cooler systems are shipped ready to install through a standard electrical knockout. There is no waiting for oil to settle back into the compressor motor, no mounting templates required or huge holes to cut into your cabinet. Cabinet Cooler systems have no moving parts to wear, making them rugged and lasting in your hot environment.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Robert Boyle the Father of Chemistry and Boyles Law

Robert Boyle, one of the founding fathers of modern chemistry and a man who changed the very way we look at scientific research. From the Scientific Method to the very laws that govern gasses, Robert Boyle was able to change the very way we look at life and solve our problems. One could say that Robert Boyle didn’t really have what you would call a humble beginning; he was born in January 1627 to the 1st Earl of Cork Richard Boyle and his wife Catherine Fenton at Lismore Castle in Ireland. When he was only 8 years of age, he was sent off to Eton College in order to study under a private tutor. In 1641 Robert would spend the winter in Florence Italy studying the “paradoxes of the great star-gazer” Galileo Galilei.

Robert Boyle

Starting in mid-1644 Robert would make his residence in Dorset England were he conducted many experiments and from then devote his life to research. In 1654, Boyle would move to Oxford from Ireland in order to further pursue his studies in chemistry. It was here in 1657 that he would read about Otto von Guericke’s air pump, and would set out to improve the system along with Robert Hooke. In 1659 the “Pneumatic Engine” would be completed and he began a series of experiments on the properties of air. He would further go on to coin the term factitious airs which is a term used to describe synthetic gases after isolating what is now understood to be hydrogen.

Though he was primarily interested in chemistry, one of Boyle’s most famous discovery was what is now known as the first of the gas laws, rightfully named Boyles’s Law.  Boyle’s Law defines the relationship between pressure and volume in a closed area given the mass of an ideal gas. Boyle and his assistant Robert Hooke used a closed J-Shaped tube and poured mercury in from the open side, forcing the air on the other side to contract under the pressure. After repeating this using several different amounts of mercury Boyle deducted that the pressure of a gas is inversely proportional to the volume occupied by it.

Boyle’s Law

In 1669 his health, although which was never very good, began to fail seriously and he withdrew from the public. In his later days he would propose some important chemical investigations which he wanted to leave as a sort of legacy for those who would were also “Disciples of the Art”, essentially future chemists. On the winters day on December 31, 1691 Robert Boyle took his final breath. In his will Robert Boyle left a series of lectures known as the Boyle Lectures the talked about the relationship between Christianity and today’s science.  

Here at EXAIR we use Boyle’s Law everyday as nitrogen, oxygen, and hydrogen (the three main elements that make up air) are all considered ideal gas. This means that all of our products are governed by the relationship between pressure and volume.

If you have questions about any of our quiet EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR or any Application Engineer.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Robert Boyle image courtesy of Skara KommunCreative Commons License