Pressure Gauges – Why You Need Them & How They Work

There is hardly a day I work that I am not talking about the importance of properly installed pressure gauges.  These small devices can often get overlooked or thought of as not necessary on an installation.  When troubleshooting or evaluating the compressed air consumption of an application, this is one of the first items I look for in the installation.

As Russ Bowman shows in the above video discussing proper piping sizes, you can see the importance of properly placed pressure gauges.  This shows the worst-case scenario where the pressure drop due to improper line sizes gives the false sense to the operator that they are achieving full line pressure when in fact they are not.  In order to accurately measure consumption rates, pressure AT THE INLET (within a few feet) to any compressed air product is necessary, rather than upstream at a point where there may be restrictions or pressure drops between the inlet and the gauge. So how exactly do these analog gauges measure the pressure of the compressed air at the installed locations?

Pressure Gauge Model 9011

The video below shows a great example of pressure increasing and decreasing moving the Bourdon tube that is connected to the indicating needle.  The description that follows goes more in-depth with how these internals function.

Most mechanical gauges utilize a Bourdon-tube. The Bourdon-tube was invented in 1849 by a French watchmaker, Eugéne Bourdon.  The movable end of the Bourdon-tube is connected via a pivot pin/link to the lever.  The lever is an extension of the sector gear and movement of the lever results in rotation of the sector gear. The sector gear meshes with spur gear (not visible) on the indicator needle axle which passes through the gauge face and holds the indicator needle.  Lastly, there is a small hairspring in place to put tension on the gear system to eliminate gear lash and hysteresis.

When the pressure inside the Bourdon-tube increases, the Bourdon-tube will straighten. The amount of straightening that occurs is proportional to the pressure inside the tube. As the tube straightens, the movement engages the link, lever, and gear system that results in the indicator needle sweeping across the gauge.

If you would like to discuss pressure gauges, the best locations to install them, or how much compressed air an application is using at a given pressure, give us a call, email, or chat.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

EXAIR and the Hierarchy of Controls

The CDC (Center for Disease Control) published a useful guide called “Hierarchy of Controls” that details (5) different types of control methods for exposure to occupational hazards while showing the relative effectiveness of each method.

NIOSH_Hierarchy_of_Controls
Hierarchy of Controls

 

The least effective methods are Administrative Controls and Personal Protective Equipment (PPE). Administrative Controls involve making changes to the way people perform the work and promoting safe practices through training. The training could be related to correct operating procedures, keeping the workplace clean, emergency response to incidents, and personal hygiene practices, such as proper hand washing after handling hazardous materials. PPE is the least effective method because the equipment (ear plugs, gloves, respirators, etc.) can become damaged, may be uncomfortable and not used, or used incorrectly.

In the middle range of effectiveness is Engineering Controls. These controls are implemented by design changes to the equipment or process to reduce or eliminate the hazard. Good engineering controls can be very effective in protecting people regardless of the the actions and behaviors of the workers. While higher in initial cost than Administrative controls or PPE, typically operating costs are lower, and a cost saving may be realized in the long run.

The final two, Elimination and Substitution are the most effective but can be the most difficult to integrate into an existing process. If the process is still in the design phase, it may be easier and less expensive to eliminate or substitute the hazard. Elimination of the hazard would be the ultimate and most effective method, either by removing the hazard altogether, or changing the work process so the hazard is no longer part of the process.

EXAIR can help your company follow the Hierarchy of Controls, and eliminate, or substitute the hazards of compressed air use with relative ease. 

Home of Intelligent Compressed Air Products

Engineers can eliminate loud and unsafe pressure nozzles with designs that utilize quiet and intelligent compressed air products such as Air NozzlesAir Knives and Air Amplifiers. Also, unsafe existing products such as air guns, can be substituted with EXAIR engineered solutions that meet the OSHA standards 29 CFR 1910.242(b) and 29 CFR 1910.95(a).

In summary, Elimination and Substitution are the most effective methods and should be used whenever possible to reduce or eliminate the hazard and keep people safe in the workplace. EXAIR products can be easily substituted for existing, unsafe compressed air products in many cases. And to avoid the hazard altogether, remember EXAIR when designing products  or processes which require compressed air use for cooling, cleaning, ejection, and more. 

If you have questions about the Hierarchy of Controls and safe compressed air usage from any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

Hierarchy of Controls Image:  used from  Public Domain

The Bernoulli Principle

When catapults would hurl stones and projectiles at castles there weren’t thinking of how the stones flew or what could make them fly better, often they went with the “Tim Taylor method” of MORE POWER.  It wasn’t until thousands of years later that mathematicians started to talk about gases and liquids and how they react to different scenarios. Things like how does air react to a stone being launched through it. Johann Bernoulli played a significant role and calculated a lot of this out throughout his life and discovered what is now called the Bernoulli Principle.

Bernoulli discovered that when there is an increase in the speed of a fluid, a simultaneous decrease in fluid pressure occurs at the same time. This is what explains how a plane’s wing shape matters. It also can showcase how a curveball coming into the strike zone can fall out and cause an outlandish “STTTeeerriike Three” from the umpire. It is also sometimes confused with the Coandă effect. While both effects have a tremendous impact on our modern lives, the best way I have learned these effects is through videos such as the one below.

As mentioned within the video, there are numerous effects that can closely relate to the Bernoulli effect, the best example I see is the curveball which when implemented correctly can cause a very upset batter, while the pitcher has the game of his or her career.

If you would like to talk about some scientific discoveries that have you puzzled, or if you want to figure out how we can use one of these effects to help your application, contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

Video Source: Fizzics Organization – 10/8/2014 – retrieved from https://www.youtube.com/watch?v=-c_oCKm5FLU&list=PLLKB_7Zd6leNJmORn6HHcF78o2ucquf0U

Torque Values and Tapered Threads – Do They Go Together?

IMG_20200202_155004_377.jpg

Over the past few weeks, I have been working on various cars in the garage with some good friends. We generally get together and help each other out to make the jobs go easier as well as help each other learn more about keeping our family’s vehicles safe and even helping out some others that don’t have the means to work on their own vehicles. Throughout these repairs, we always end up in some type of discussion over something fairly technical. Sometimes it is the proper installation of a part such as take the bolts to snug, back them out, then torque to half the total torque value, back off again, then finally tighten to the complete torque.

We also share different ways of doing the jobs, such as how to lessen the amount of hot oil you are about to pour all over your hand, or how to get that rusted bolt out without a torch and without breaking it. One discussion that comes up quite frequently is torque specs and then the torque spec for a tapered thread.

In case you were not aware, the NPT or BSPT (male) inlets on EXAIR products are both a tapered thread. Tapered threads are generally used on pipe fittings under pressure to seal better and provide a secure engagement. When comparing this to a standard bolt, or straight thread, one is generally accustomed to receiving a torque spec on just how tight to get the fitting or threaded product. For example, the 1/4-20 bolts used in our Super Air Knives are torqued to 7.5 ft-lbs. in order to properly seal the cap, shim, and body together. These are straight threads and thus a torque spec is often driven by the material, size, and thread of the bolt. Torque on tapered threads such as NPT or BSPT fittings is not as easy to find, and not really reliable.

For tapered threads, the engagement of the thread is not always at the same point due to differing tolerances on thread dimensions. These differences create different points of thread engagement with the corresponding thread it is tightening into. For these scenarios, the torque specification is not always best suited as a numeric value. If you search hard enough you can find a table like the one shown below, but again, not the best value to use when installing a tapered thread.

Size in-lbs N-m
1/16″ 5 0.57
1/8″ 7 0.79
1/4″ 16 1.81
3/8″ 23 2.6
1/2″ 30 3.39
3/4″ 54 6.1
1″ 78 8.81

I personally would not use a straight numeric torque when tightening something with stainless steel thread into a brass fitting, or other dissimilar materials together. For this scenario, I would recommend using something like the table below. The TPFT value is, turns past finger tight. This means you would snug the super air nozzle, vortex tube, or other fittings by hand to finger tight. Then using a wrench or two if needed, turn the fitting to the correct number of revolutions for the given thread size. By utilizing this method and the correct amount of thread sealant, see John Ball’s video blog below, you can ensure there will not be a concern on whether or not the joint will leak and also if the fitting is tight enough.

NPT Size TPFT
1/8″ 2-3
1/4″ 2-3
3/8″ 2-3
1/2″ 2-3
3/4″ 2-3
1″ 1.5-2.5

If you would like to discuss torque settings, installation of your engineered compressed air solution, or even what might be wrong with your minivan, contact us.

Brian Farno
Application Engineer/Garage Mechanic Extraordinaire
BrianFarno@EXAIR.com
@EXAIR_BF