OSHA Says Keep Compressed Air Use Safe and Quiet: EXAIR Does Just That

The Occupational Safety and Health Act was signed by Richard Nixon in 1970. Under the United Sates Department of Labor, shortly thereafter; OSHA, or the Occupational Safety and Health Administration was born. OSHA is a large regulatory agency tasked to assure safe and healthy working environments by setting and enforcing standards as well as to provide training, outreach and assistance. Although some people’s first response is to cringe at the word OSHA, they have been instrumental in dramatically reducing injury rates and injury costs without negative effects on employees or companies.

Sure we can all cringe by looking up OSHA horror stories on YouTube. And many of us have a story about that one company that was fined 10’s of thousands of dollars for x, y, or z violations… But in reality, OSHA are not the bad guys. They are not looking for fines, in fact they generally give warnings and timelines to fix possible issues, prior to an incident. The fines typically are generated when companies fail to comply. Yes, I know there are always exceptions, but exceptions are not the rule. We hear and hold on to the radical stories, and the day to day, mundane stories fall to the wayside. Regardless of how we feel, we all must comply.

When it comes to EXAIR products, there are two OSHA standards that we must adhere to. One is related to “sound” and one is related to “dead end pressure“.

First let’s look at the dead end pressure. OSHA Safety requirement 29 CFR 1910.242 (b) discusses the possibilities for air embolisms when more than 30 psi is “dead ended” into your skin. EXAIR products have pathways for air to exhaust so that they cannot be “dead ended”. Each product has a way for the air to exhaust to avoid danger. Here are a couple of examples:

Air nozzles have multiple paths to exhaust pressure
Air Knives exhaust the entire path, as well as out each end

Take note that when being used properly (no horseplay) the airflow will have some path to escape and cannot be blocked. They are designed so that air will escape prior to any danger.

Next we will take a look at OSHA requirement 29 CFR-1910.95 (a). This regulation deals with occupational noise exposure. Measuring sound in decibels (dBA) the magic number is 90. Anything under 90 dBA has no limitations on how long you can be exposed to it. For a reference 60 dBA is about the sound level of a normal conversation, or an air conditioner. 70 dBA is about the noise of a washing machine, 80-85 is like city traffic. Then we start getting loud like a motorcycle around 95, shouting or barking is about 110, and standing near a siren is about 120dBA.

Hearing loss is the best known, but not the only, ill effect of harmful noise exposure. It can also cause physical and psychological stress, impair concentration, and contribute to workplace accidents or injuries.

As mentioned, 90 dBA or less is our target to avoid needing alternative solutions such as noise barriers or PPE. Nearly all EXAIR products are compliant at or under 90 dBA. The few exceptions are with some of our high force / extensive reach products such as our High Force Air Nozzles.

Please reach out at anytime if you have any questions, or want to discuss EXAIR and OSHA compliance, or any EXAIR questions at all.

Thank you for stopping by,

Brian Wages

Application Engineer

EXAIR Corporation
Visit us on the Web
Follow me on Twitter

NIOSH Hierarchy of Controls

Last year I hosted a Webinar about the NIOSH Hierarchy of Controls and compressed air safety! You can watch that here on our website!

The hierarchy of controls is a strategy that originates from NIOSH (National Institute for Occupational Safety and Health). NIOSH is the federal agency responsible for conducting research and making recommendations for the prevention of work-related injury and illness. This hierarchy is their recommendation for increasing safety for personnel by taking specific steps and how each step increases safety moving from bottom to top of the pyramid. In this blog I will explain the main elements of the HIERARCHY OF CONTROLS and illustrate how to reach the highest level of control with important compressed air safety standards.

The least effective methods are Administrative Controls and Personal Protective Equipment (PPE). Administrative Controls involve making changes to the way people perform the work and promoting safe practices through training. The training could be related to correct operating procedures, keeping the workplace clean, emergency response to incidents, and personal hygiene practices, such as proper hand washing after handling hazardous materials. PPE is the least effective method because the personnel themselves make the choice to wear them or not wear them in any particular situation. They can be trained on the risks of not using PPE equipment (ear plugs, gloves, respirators, etc.) but we all know it does not always get used. PPE can also become damaged, may be uncomfortable and not used, or used incorrectly.

In the middle range of effectiveness is Engineering Controls. These controls are implemented by design changes to the equipment or process to reduce or eliminate the hazard. Good engineering controls can be very effective in protecting people regardless of the the actions and behaviors of the workers. While higher in initial cost than Administrative controls or PPE, typically operating costs are lower, and a cost saving may be realized in the long run.

The final two, Elimination and Substitution are the most effective but can be the most difficult to integrate into an existing process. If the process is still in the design phase, it may be easier and less expensive to eliminate or substitute the hazard. Elimination of the hazard would be the ultimate and most effective method, either by removing the hazard altogether, or changing the work process so the hazard is no longer part of the process.

EXAIR can help your company follow the Hierarchy of Controls, and eliminate, or substitute the hazards of compressed air use with relative ease. 

Home of Intelligent Compressed Air Products

Engineers can eliminate loud and unsafe pressure nozzles with designs that utilize quiet and intelligent compressed air products such as Air NozzlesAir Knives and Air Amplifiers. Also, unsafe existing products such as air guns, can be substituted with EXAIR engineered solutions that meet the OSHA standards 29 CFR 1910.242(b) and 29 CFR 1910.95(a).

Elimination and Substitution are the most effective methods and should be used whenever possible to reduce or eliminate the hazard and keep people safe in the workplace. EXAIR products can be easily substituted for existing, unsafe compressed air products in many cases. And to avoid the hazard altogether, remember EXAIR when designing products  or processes which require compressed air use for cooling, cleaning, ejection, and more. 

If you have questions about the Hierarchy of Controls and safe compressed air usage from any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Hierarchy of Controls Image:  used from  Public Domain

What is Sound: The Correlation Between Sound Power and Sound Pressure

Sound, it is all around at every given point of the day. Whether it is from the music we listen to, the person talking to you, your cars engine, or the wind blowing through the leaves there is no escaping it. Hearing is one of the five senses that the majority of humans rely on and should be protected at all costs and with a good understanding of what sound is, one can help mitigate damage done to their hearing. Sound can be broken down into two parts, sound power and sound pressure. But the real question is, how do these corollate to each other to become the sound that we rely on.

Sound Wave

Sound Power (Watts) is defined as the rate at which sound energy (decibels) is emitted, reflected, transmitted or received, per unit of time. Whereas, Sound Pressure is defined as the local pressure deviation from the ambient atmospheric pressure, caused by a sound wave. Based on these two definitions it can be determined that sound power is the cause that generates the sound wave and sound pressure is the effect or what we hear after the sound wave has traveled to the ear.

This can be summed up in a simple analogy using a light bulb. Light bulbs use electricity to generate a source of light, this means that the power required (also stated in Watts) to cause the bulb to light up is comparable to Sound Power. The intensity of the light being generated (stated in Lumens) would be the Sound Pressure. Sound Pressure is what we would typically hear or call sound. This is what is measured because that is the harmful aspect to our hearing and ears. If the Sound Pressure is high enough and the ear is exposed to it long enough, permanent damage can be done resulting in hearing loss to the point of complete hearing lose.

I have known many people who have lost there hearing either completely or a large portion of it from exposure to loud noises. EXAIR designs and manufactures quiet and efficient point of use compressed air products. These products either meet or exceed the OSHA noise Standards in OSHA Standard 29 CFR – 1910.95 (a).

The OSHA Standard for how long someone can be exposed to a certain noise level

If you are not sure what the noise level is in your facility check out EXAIR’s Digital Sound Level Meter. It’s an easy to use instrument for measuring Sound Pressure levels in an area.

EXAIR’s Digital Sound Level Meter

If you have questions about the Digital Sound Level Meter, or would like to talk about any of the quiet EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR or any Application Engineer.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Dead Serious About Dead End Pressure and Chip Guarding – OSHA 1910.242(b)

Compressed air is a very versatile utility that can be used for applications in cooling products to cleaning off workspaces and products. That is where OSHA 1910.242(b) comes into play; this OSHA standard states that compressed air used for cleaning shall not be used except were reduced to less than 30 psi and then only with effective chip guarding and personal protective equipment. This standard is in place because in the event a dead end occurs, the static pressure at the main orifice can potentially force the high pressure air into someone’s bloodstream and cause an air embolism, which if left untreated can impede the flow of blood in the body and lead to a fatality.

Keeping that in mind there are two ways you can go about these cleaning applications and still stay in compliance with the OSHA standard. The first way is to regulate the air pressure in your pipe down to below 30 psig. But for the majority of applications this is not an effective solution as pressure does equate to the amount of force that can be produced from the system. The second solution is to use a nozzle that is engineered in a way the it cannot be dead ended. This means that the nozzle is designed in a way that no matter how hard you try the air coming out of the nozzle will be ejected into the atmosphere and not through skin.

The fins of the Super Air Nozzle allow air to escape and prevent dead-ending the nozzle.

Take EXAIR’s Air Nozzles for example, the fins and orifice placement are designed in a way that allows air escape air into the atmosphere. Once air has exited an orifice into atmospheric conditions the pressure becomes 0 psig but retains the velocity and higher volume from the higher compressed air inlet pressure which produces force.

Model 1210 Soft Grip Safety Air is fitted with an EXAIR Super Air Nozzle. We can also supply it with a Rigid Extension and Chip Shield (right).

In addition, OSHA 1910.242(b) also talks about the use of effective chip guarding, which simply means some method or equipment shall be installed that prevents particles from flying back and hitting the operator. If you look EXAIR’s Safety air guns you will notice that we offer Chip Shields. By simply adding “-CS” to the end of a part number for a Safety Air Gun you can help prevent injuries from flying particles in blow off applications.

If you have any questions or want more information on compressed air safety and OSHA related standards. Give us a call, we have a team of application engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook