EXAIR Leads the Way with Standards and Certifications

For over 34 years, EXAIR has been the industry leader in providing Intelligent Compressed Air Products to the industrial marketplace. While much of our focus is to ensure our products are engineered to provide optimal performance, we are also dedicated to manufacturing products that meet a wide range of standards and directives to promote safety in relation to plant personnel.

 

For instance, all of our compressed air operated products meet or exceed OSHA Standards 29 CFR 1910.242(b), requiring that the outlet pressure of an open pipe, nozzle, air gun, etc., when used for cleaning purposes, must remain below 30 PSI when dead-ended against the skin, as well as Standard 29 CFR 1910.95(a) as a way to protect workers from job related injuries related to dangerous sound levels of 90 dBA and higher.

 

 


Many of our products are also CE Compliant, meeting the mandatory requirements for products intended to be sold in the European Economic Area or “EEA”. For example our Electronic Flow Control and Electronic Temperature Control (ETC) meet the EU (European Union) Low Voltage Directive 2006/95/EC.

 

 

EXAIR electrically powered devices, like our Static Eliminators and Digital Flowmeters for example, comply with the “Restriction of Hazardous Substances” or RoHS Directive 2011/65/EU, including the amendment outlined in the European Commission decision L 214/65.

 

 

We are also committed to providing material that supports the conflict mineral free rule to help aid in the relief of illegal trade of exotic materials, like tungsten, gold, tin and tantalum in the DRC region. Using the CMRT 4.20 template, we document our supply resources to ensure we provide conflict free products, as outlined in Section 1502 of the Dodd-Frank Wall Street Reform and Consumer Protection Act.

 

Lastly, the European Union introduced the REACH program – Registration, Evaluation, Authorization and Restriction of Chemicals, as a method to register chemical substances being imported into the EU to protect people and the environment, per Regulation (EC) No 1907/2006 Title I, Article 3.  Also noted in the program, Title II, Article 7, they state that any product with a substance intended to be released under normal operating conditions, must be registered for quantities totaling more than 1 metric ton per year. Since EXAIR products do not intentionally release or contain any such substances, registration to meet the program is not required.

 

If you have any questions about any of these Standards or Directives or about which EXAIR products comply, please feel free to contact an application engineer for assistance. We’d be happy to help!

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

Engineered Air Nozzles Reduce Noise Levels and Outlet Pressure, Meeting OSHA Requirements

“My operators are complaining that our air guns are too loud, how can you help me?” – is a very common inquiry we receive here at EXAIR on almost a daily basis. Many open end blowoffs or air guns fitted with nozzles that have cross drilled relief holes create high pitch wind shear, resulting in excessive noise levels, sometimes exceeding 100+ dBA. This not only is a safety concern but also an OSHA violation.

Variety of Air Nozzles that produce dangerously loud noise levels

Loud noises and the length of exposure time can lead to significant health concerns such as long term hearing loss, increased stress levels and potential injury due to lack of concentration. The Occupation Safety and Health Administration (OSHA) introduced Standard 29 CFR 1910.95(a) as a way to protect workers from job related injuries associated to potentially dangerous sound levels. Per the Standard, at 90 dBA an operator is limited to a maximum of 8 hours of constant exposure. As noise levels increase, the allowable exposure time decreases, in some cases slowing production, costing a company on their bottom line.

 

EXAIR’s Air Nozzles are engineered so they entrain surrounding air across the profile of the nozzle, which produces a smoother airflow, ultimately reducing wind shear, resulting in much lower sound levels, meeting the OSHA Standard.

Illustration showing the air travel of our Super Air Nozzles

 

In addition, our Air Nozzles also meet the OSHA Standard 1910.242(b) for 30 PSI dead end pressure. All of our engineered Air Nozzles provide a relief or a safe path for the air to exit if the nozzle were to be blocked or pressed against an operator’s body so the exiting air pressure will never reach 30 PSIG.

All of EXAIR’s Air Nozzles are available with standard NPT threads to easily adapt to existing air guns. We also off our full line of Safety Air Guns which are fitted with our engineered nozzles, providing an “off-the-shelf” OSHA compliant solution. For help selecting the best product to replace your existing device or if you have a new application you would like to discuss, give us a call at 800-903-9247.

Justin Nicholl
Application Engineer
justinicholl@exair.com
@EXAIR_JN

 

Explanation of OSHA Standard 1910.242(b)

Open air lines and homemade blow offs violate OSHA standard 1910.242(b) because of harmful dead end pressures. In 1972, OSHA established Standard 29 CFR 1910.242(b) requiring that the outlet pressure of an open pipe, nozzle, air gun, etc., when used for cleaning purposes, must remain below 30 PSI with the intent to protect workers from serious injury. They determined that when dead-ended against the skin, if the outlet pressure reached 30 PSI 0r higher,  it posed a risk of entering the bloodstream through the skin. This is commonly referred to as an air embolism – a serious condition which can be life threatening. Once air has entered the bloodstream, it can restrict the free movement of blood throughout the body, disrupting normal heart function, leading to abnormal heart rhythm, possible lung or brain damage, cardiac arrest, stroke or possible death.

OSHA explains that you can use compressed air for cleaning purposes, as long as the outlet or source is fitted with some type of relief device that drops the outlet pressure to below 30 PSI if dead ended. There are basically two ways to go about gaining compliance. The first is to regulate the operating supply pressure to less than 30 PSI, assuring that the outlet pressure doesn’t exceed the threshold. While this does comply with the Standard, it can negatively affect the performance by reducing the strength of the outlet flow, limiting the usefulness of the blowoff device.

The other method is to use some type of nozzle which includes a pressure reducer or a relief device which will reduce the air pressure to less than 30 PSI if the nozzle is dead ended.

For example, EXAIR engineered air nozzles are designed so the outlet holes cannot be blocked directly. Any potential obstruction of the outlet air holes results in the air having an alternative exit path to avoid injury to operators and personnel.

sag-osha-compliant

With our Super Air Nozzles, the air exits through a series of jets, recessed behind an array fins so the exhausting airflow can never be blocked.

With the design of our Super Air Knife, the cap overlaps the body, leaving a gap on both sides of the knife, allowing the exhausting air to safely vent.

osha-sak

Picture of the Super Air Knife, showing how the cap overlaps the body and cannot be blocked, providing a safe exit path.

ALL of EXAIR‘s engineered products incorporate these principles, providing some type of relief, allowing for the air to safely vent well below the 30 PSI requirement, meeting and in many cases, exceeding the OSHA Standard.

To discuss how EXAIR can help you gain OSHA compliance to improve operator safety, avoid costly fines and improve overall efficiency, contact an application engineer for assistance.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

EXAIR Air Guns Increase Safety And Reduce Air Use

Many times we receive calls from customers that fall right in line with our focus here at EXAIR  – providing Intelligent Compressed Air Products that improve overall safety for operators and plant personnel in industrial operations as well as reduce compressed air usage, ultimately lowering energy costs. Such was the case last week when I received an inquiry from a customer who was looking for a handheld device that could easily attach to their existing air hose to replace the loud and inefficient homemade air nozzles they are currently using to blow off steel chips and coolant from their saws and drills. Their current set up includes a combination of smashed air guns, similar to the one shown below, some small open tubes and cheap plastic nozzles. The blowoffs were working but their operators were starting to complain about excessive noise during operation and notice the compressor in the area was running continuously during the cleaning cycle. Their first proposed solution was to lower the supply pressure which did lower the sound level and air usage somewhat, but now the exiting airflow wasn’t powerful enough to clear the debris. After doing an internet search they decided to reach out to EXAIR for assistance.

crushed-gun

Crushed guns create high pitch wind shear and provide no relief path for the air to exit safely

All of the Safety Air Guns we offer utilize our Air Nozzles which are engineered to meet or exceed OSHA Standard CFR 29 – 1910.95(a) for allowable noise exposure levels. As the Standard reads, when employees are subjected to sounds in excess of 90 dBA, some type of engineered controls should be used to lower the sound to a permissible level. Prolonged exposure to excessive noise can result in serious health issues, like tinnitus or a constant ringing of the ears, as well as stress and reduced productivity. In addition, our engineered Air Nozzles cannot be dead ended, meeting OSHA Standard 1910.242(b). With the design of our Air Nozzles, there is always a safe path for the air to exit so the outlet pressure will not reach 30 PSIG if the nozzle exhaust were to be blocked or pressed against the skin.  Due to this design, our units are safe to operate at higher pressure, resulting in a high velocity, forceful airflow.

1210

Model 1210 – Soft Grip Safety Air Gun

For this application, I recommended the customer use our Model # 1210 Soft Grip Safety Air Gun. This particular unit incorporates our Model # 1100 Super Air Nozzle which produces a low sound level of 74 dBA, well within the OSHA guidelines, and consumes only 14 SCFM @ 80 PSIG while having the necessary power to solve their application.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

One Air Nozzle Saves $960 per Year – How Many Nozzles Could You Use?

A cardboard manufacturing facility was using a 3/8” outside diameter (OD) open tube to blow scrap cardboard off a conveyor. This scrap cardboard would occasionally be blown inside the roller area at the end of a conveyor creating a maintenance nightmare that required hours to disassemble and remove. To prevent this from occurring they installed another 3/8″ OD open compressed air tube to divert any cardboard headed toward the conveyor roller. The 3/8″ open tubing eliminated the scrap problem, but introduced a few new ones. The open hose is extremely noisy over (100 dBA). It does not comply with OSHA standard CFR 1910.242(b), which requires that a compressed air blow off device may not be dead ended at more than 30 PSIG. The most costly problem though is a 3/8″ open tubing uses a tremendous amount of compressed air.

They were using so much air in the facility that they were draining the system pressure in their facility. Obviously, they were going to replace the open tube with EXAIR 2” Flat Super Air Nozzle. Replacing this open blow off with an intelligent compressed air product, like the HP1125 High Powered Flat Super Air Nozzle or the 1104 Super Air Nozzle, would lower the noise level below 83 dBA. Also, those nozzles use significantly less air. They decided to use the model HP1125 for its thin profile to fit into the tight location. The only question was how much air and energy cost would they save. They could have easily installed a Digital Flow Meter on the supply pipe of the open tube to measure the change in flow once the EXAIR nozzle had been installed, but they wanted to try and estimate the air usage.

Using EXAIR’s test data, we know a 3/8″ OD open tube that is 18″ long will flow 68.5 SCFM at 80 PSIG. An HP1125 2″ Flat Super Air Nozzle utilizes 37 SCFM when fed with 80 PSIG inlet pressure. By removing one 3/8″ OD tube the cardboard manufacturer saved 31.5 SCFM of compressed air. With an electrical cost of $0.08 per kWh, compressed air costs $0.25 per 1000 SCF. Saving 31.5 SCFM reduces the manufacturers electrical bill by $0.48 every hour, $3.48 for every 8 hour shift, and $960 per year (250 working days, eight hours a day). If the manufacturer runs two shifts, the savings will double. The simple return on investment for this nozzle is 130 hours! How many projects can you measure a return on investment in hours?

2 Inch Flat

EXAIR’s 2 Inch High Power Flat Super Air Nozzle, HP1125

Take advantage of our free service – the EXAIR Efficiency Lab. Our Application Engineers will test any nozzle or device you choose to send in to the Lab using our calibrated testing equipment. We’ll compare the performance of your existing product (air consumption, noise, force, etc.) with an EXAIR Intelligent Compressed Air product. The results will be published in a comprehensive report, including a cost savings analysis with simple ROI. For most applications, EXAIR products can help you improve compressed air efficiency AND pay for themselves in a matter of weeks!

EXAIR intelligent compressed air products are easy to install, safe, and efficient. By installing these products instead of using unsafe open blow offs, your company can save thousands of dollar every year with minimal investment. While saving electrical expenses, we decrease the noise level which makes your production force a nicer place to work. We also comply with OSHA’s standards. Finally, we may be able to design the blow off better to consistently produce the quality product you expect. Call EXAIR today to discuss your application.

Dave Woerner
Design Engineer at EXAIR Corporation
DaveWoerner@EXAIR.com

Selecting the Right Air Gun is a Key for Success

Last week I wrote about the OSHA requirements for using compressed air for cleaning in “How to Meet the OSHA Compressed Air Standard“. That was a title only an engineer could love. It was functional and with no flash. In my quest to write to my audience, I’m going back to the well today. I want to talk about using the right tool for the right job.

Every engineer worth his salt knows that using the wrong tool to do the job can make the task at hand ten times harder, than it needs to be…

And every weekend warrior of home, or automotive repair has used the wrong tool for the job. Most of the time these tools are going to work in a pinch. But when they don’t work, they can fail spectacularly. Yes, the flat head screw driver might be able to turn the Phillips head screw, but it can also strip the screw or slip out and dent the wall. Yes, the adjustable wrench works on quite a few different bolts, and will work as a weak hammer in a pinch, but when you have to go back in the house to get a rubber mallet, the socket set and discard the pieces of your broken wrench, you will wish you had the right tool in the first place.

I want to include the importance of using the right air gun for the job. Our priority for specifying air guns (and some would argue,  in life) should be safety first. Protecting the people using our products is the most important task. The best way to protect them is to specify the right Safety Air Gun to get the job done.

How can getting the right air gun increase safety? If we have the right tool for the job, we can avoid modifications to the safety features of our air gun. Below are two examples of what we see on a regular basis.

crushed air gun

Air escaping this gun will be LOUD, annoying and violates OSHA standard 1910.242(b).

Open Air Gun

Nothing says I’m costing the company money like a wide open air gun – and it’s DANGEROUS.

 

The air guns above belong to new customer, who had provided air guns with a cross drilled nozzle to the employees in their shop. The employees gave up their homemade air guns and managed to comply with OSHA standards for a few minutes, some may have even reached hours of safety…

I can almost envision the sequence of events… The OSHA inspector warns or fines the company for using  blow offs which violate the standards for pressure and/or noise exposure. Management makes certain the guns get replaced, Supervision or engineering finds a cheap quick solution, and no one checks to see, if the air gun can do the work. Workers find that the new air guns don’t have the same force, so they start altering the nozzles and guns to get the job done.

Several months pass. The OSHA inspector returns. The company is still fined for violating Directive Number STD01-13-001 standard 1910.242(b), because their blow offs can be dead ended and they are using a pressure higher than 30 PSIG. Also, a noise audit finds that the sound level in the plant is higher, than it has ever been, so all employees are now required to wear hearing protection.

Not quite the fix that everyone thought. Modifying air guns and/or air nozzles can create additional safety hazards for employees and increase compressed air expenses. Consider engineered Safety Air Guns and our line of Super Air Nozzles when looking for a safe and efficient solution to your processes and compressed air applications.

Left-right:  Precision, Soft Grip w/Stay Set Hose, Heavy Duty w/Rigid Extension, & Super Blast Safety Air Guns

Here are some legitimate solutions for increasing safety and decreasing noise. Left to right: Precision Safety Air Gun, Soft Grip Safety air Gun w/Stay Set Hose, Heavy Duty Safety Air Gun w/Rigid Extension, & Super Blast Safety Air Gun.

At EXAIR, we strive to provide our customers the support and guidance, which they require to run a company safely and efficiently. We offer an efficiency lab to test any homemade blow offs, guns or nozzles.  Once we have tested these pieces for force, flow, and noise, we can specify a nozzle, safety air gun, air amplifier, or air knife that will meet the force requirement, while saving compressed air and lowering the noise level. Please contact an Application Engineer today to get your employees the right tool to do their job safely every time.

Dave Woerner
Application Engineer
Davewoerner@EXAIR.com
@EXAIR_DW

 

%d bloggers like this: