Sound – It Adds Up! How to Calculate Decibel Levels

Keeping noise levels in check and at safe levels is very important to ensure employee safety and well being.  OSHA (the Occupational Safety and Health Administration) through standard 29 CFR-1910.95(a) has studied the situation and set Maximum Allowable Noise Exposure limits in Hours per Day based on the Sound Level, in dBA, of exposure.

For existing processes, a Digital Sound Meter is a valuable tool to measure the sound level to ensure that the source of loud noises can be quickly identified and isolated for immediate corrective action.

For new processes, or changes to an existing process, it is important to estimate the sound level prior to installation and start-up, so that precautions can be taken as needed.

For example, let’s say we are going to add a blow off station to clean off a part on a conveyor to improve the process and increase the throughput.  A typical set-up might be a 12″ Super Air Knife (model 110012) blowing off the top and a pair of Super Air Nozzles (model 1100) to blow off the sides.

SAK and ASAN
12″ Super Air Knife and Super Air Nozzle

If we look at the performance data for the (2) different blow off devices, we find that the Super Air Knife is rated at 69 dBA and the nozzles at 74 dBA, when operated at 80 PSIG of compressed air supply.

SAK and ASAN

When asked, “what is the sound level for (1) of the knives, and (2) of the nozzles” a little Acoustic Engineering is in order. The decibel scale is logarithmic, and determining the total sound level when all (3) devices are in operation is not as easy as adding up the three sound level values (which would equal 218 dBA, way off the charts!).  Thankfully, both the actual sound level and the numerical value are determined another way.  I’ll spare you a lot of the math but the equation is as below.

Capture

… where SL1, SL2, SL3, … are the sound levels in dBA of the each sound makers, for as many that are being combined (in our example SL1 = 69, SL2 = 74 and SL3 = 74)

Plugging in the numbers into the equation, the combined sound level works out to be a quiet 77.65 dBA — well within the OSHA limit for exposure for a full 8 hour period.

To discuss your application and how an EXAIR Intelligent Compressed Air Product can make your process better and quieter, feel free to contact EXAIR and myself or one of our other Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Protect Personnel from Noise with Engineered Products

Sound can be defined as vibrations that typically travel as an audible wave through mediums that can be a gas, liquid or solid. For this blog we will concern ourselves with sound travelling through a gas (atmosphere) in an industrial setting.

Sound is energy that travels in waves and is measured by its frequency (cycles per second) and amplitude (intensity). A common unit of measurement for sound energy is the decibel. The decibel (abbreviated with dBA) is a unit-less number that is based on the logarithm of a known measured quantity to a reference quantity. Without reciting the equation for every increase of 3 dBA is a doubling of sound energy or twice as loud.

Since our focus is on industrial sound one might question why be concerned at all, after all sound emanates from most machines and devices. The reason for concern is that there are OSHA regulations regarding the amount of time workers can be exposed to different levels of sound in their workday as illustrated below. These limits are in place to protect personnel from Noise Induced Hearing Loss or NIHL. When the damage to anyones hearing is caused by their profession, it is also referred to as Occupational Hearing Loss or OHL.

After monitoring for noise, NIOSH and the CDC next recommend administrative controls to minimize or eliminate the noise hazard (click for their helpful PDF). This would include the use of noise reducing EXAIR products like Super Air Nozzles, Air Knives and Air Amplifiers.

dBA Chart.JPG
OSHA Maximum Allowable Noise Exposure

When considering the many items in an industrial setting that produce loud sounds the list would be exhaustive. Many of them simply produce loud sounds that can’t be eliminated or reduced while on the other hand there are some that can. Some of the noisiest offenders that plants have control over are air powered tools and open tube blow-offs.  Eliminating inefficient methods of part blow off & part cleaning with an engineered solution allows a company to significantly reduce the level of sound in their plant, improve worker safety and save money on compressed air consumption.

Employers are required to provide hearing protection to employees whom are exposed to sounds above 90 dBA on a Time Weighted Average (TWA). Without digressing into the formulas TWA calculates a workers daily exposure to occupational sounds by taking into account the average levels (in dBA) and the time exposed to different levels.  This is the how OSHA assesses workers exposure and what steps should be taken to protect the workers.

To conclude, plants need to be mindful of the OSHA regulations for sound levels, time of exposure and that hearing protectors wear out. Earmuff seals can lose their elasticity and reduce their effectiveness and the soft pre-molded earplugs can wear out in a day and need replaced.  Keep a good supply on hand and OSHA suggests letting workers with noisy hobbies take them home for protection off the clock!

If you would like to discuss reducing noise or any EXAIR product, I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer

Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

The Decibel

The decibel is a unit of measurement that relates the ratio of a physical value to another value and is expressed on a logarithmic scale.  The common symbol for decibel is dB.  The decibel is used as a measure for many parameters in science and engineering such as acoustics (sound), electronics (power levels) and control theory.

The decibel originates from methods used to express performance and loss in telegraph and telephone circuits.  The term ‘bel’ was coined in honor of Alexander Graham Bell, and the decibel, being 1/10th of a bel was established.

For most of us, the decibel is the familiar term relating to how loud a sound is.

With sound, the sound pressure is typically what is measured and is the local pressure deviation from the base or equilibrium atmospheric pressure, caused by a sound wave. In air, the sound pressure can be measured by a standard microphone, and is measured in pascals (Pa.)

To get to the common decibel reading we are familiar with, a little mathematics comes into play.

Capture

  • where Lp is the Sound Level in dB, prms is the measured sound pressure, and pref is the standard sound reference pressure of 20 micropascals.
  • The prms is what is measured by a microphone

Below are some representative sounds and the decibel rating – Note that sounds that are above 85 dB can cause hearing issues, and proper protection should be taken.Decibel Scale Still Photo

Some other interesting blogs about sound for you take a look at-

Measuring and Adding Sounds

Sound Power Level and Sound Pressure

Super Air Knife Math – When 72  + 72 = 75

If you would like to talk about sound or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

EXAIR Products: Silencing Mufflers Overview

OSHA Standard 29 CFR 1910.95(a), relating to permissible noise exposure levels, states that when employees are subjected to sounds in excess of 90 dBA, some type of control should be used to reduce the sound level. In an industrial setting, it’s very common to find the exhausting air from air operated devices such as actuators, diaphragm pumps or cylinders for example, to produce sound levels well above the allowable limits set forth in the Standard. EXAIR offers a variety of different Silencing Mufflers that help to reduce this  noise level, while also increasing operator safety.

 

Reclassifying Mufflers are available in 1/8″, 1/4″, 3/8″, 1/2″, 3/4″ and 1″ NPT sizes

EXAIR’s Reclassifying Mufflers offer noise reduction up to 35 dB and are available in sizes ranging from 1/8″ to 1″ NPT. These types of mufflers are often considered”dual-purpose” as they not only reduce the noise level but also remove oil from the exhaust airflow by incorporating a removable filter element.  The exhausting oil mist is reduced from 50 PPM (parts per million) to only 0.015 PPM, when the device is operated at 100 PSIG. In addition, there is a bowl on the bottom to capture any residual oil and a 1/4″ tube adaptor to allow for easy draining.

Sintered Bronze Mufflers are available in #10-32, 1/8″, 1/4″, 3/8″, 1/2″, 3/4″, 1″, 1-1/4″ and 1-1/2″ NPT sizes, as well as 1/2-20 UNF female for use with solenoid valves
Straight Through Mufflers are available in 1/4″, 3/8″ and 3/4″ MNPT x FNPT

Sintered Bronze Mufflers are a relatively low cost option, commonly used with air cylinders as they can be installed quick and easy. We offer 1o different sizes, ranging from #10-32 for small installations, up to 1-1/2″ NPT for larger scale applications. The noise reduction depends on the size of the muffler and back pressure, which can occur from dirt or particulate clogging the muffler, restricting the exhausting airflow from passing through the porous sintered bronze.

Our Straight Through Mufflers are made of corrosion resistant aluminum and are lined with a sound absorbing foam, capable of reducing noise levels up to 20 dB. We offer 3 different sizes, 1/4″, 3/8″ and 3/4″ NPT, with a male thread on one end and female thread on the other. We incorporate this muffler design into our Cold Guns and Adjustable Spot Coolers and they are commonly used with our Vortex Tubes, Cabinet Cooler® Systems and E-Vac® Vacuum Generators as well.

Heavy Duty Mufflers are available in 1/4″ and 3/8″ FNPT

Lastly, the Heavy Duty Mufflers feature an internal, 50 mesh stainless steel screen, to protect against contaminants in the airflow,  and a corrosion resistant aluminum outer shell. In most cases, the sound reduction can be as high as 14 dB and we offer 2 different sizes, 1/4″ and 3/8″ FNPT. These types of mufflers are regularly used on the hot air exhaust of our Vortex Tubes.

For help with product selection or to discuss a particular process, please contact one of our application engineers at 800-903-9247.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

Sound Power Level and Sound Pressure

Energy…all day (and night) long, we humans are surrounded by – and bombarded by – all kinds of energy. Sometimes, the effects are pleasant; even beneficial: the warmth of the sun’s rays (solar energy) on a nice spring day is the sure-fire cure for Seasonal Affective Disorder, and is also the catalyst your body needs to produce vitamin D. Good things, both. And great reasons to get outside a little more often.

Sometimes, the effects aren’t so pleasant, and they can even be harmful. Lengthy, unprotected exposure to that same wonderful sun’s rays will give you a nasty sunburn. Which can lead to skin cancer. Not good things, either. And great reasons to regularly apply sunblock, and/or limit exposure if you can.

Sound is another constant source of energy that we’re exposed to, and one we can’t simply escape by going inside. Especially if “inside” is a factory, machine shop, or a concert arena. This brings me to the first point of today’s blog: sound power.

Strictly speaking, power is energy per unit time, and can be applied to energy generation (like how much HP an engine generates as it runs) or energy consumption (like how much HP a motor uses as it turns its shaft) For discussions of sound, though, sound power level is applied to the generation end. This is what we mean when we talk about how much sound is made by a punch press, a machine tool, or a rock band’s sound system.

Sound pressure, in contrast, is a measure of the sound power’s intensity at the target’s (e.g., your ear’s) distance from the source. The farther away you get from the sound’s generation, the lower the sound pressure will be. But the sound power didn’t change.

Just like the power made by an engine and used by a motor are both defined in the same units – usually horsepower or watts – sound power level (e.g. generation) and sound pressure (e.g. “use” by your ears) use the same unit of measure: the decibel.  The big difference, though, is that while power levels of machinery in motion are linear in scale, sound power level and pressure scales are logarithmic.  And that’s where the math can get kind of challenging.  But if you’re up for it, let’s look at how you calculate sound power level:

Sound Power Level Equation

Where:

Wis reference power (in Watts,) normally considered to be 10-12 W, which is the lowest sound perceptible to the human ear under ideal conditions, and

W is the published sound power of the device (in Watts.)

That’s going to give you the sound power level, in decibels, being generated by the sound source.  To calculate the sound pressure level:

Sound Power Level to Sound Pressure Equation

Where:

Lis the sound power level…see above, and

A is the surface area at a given distance.  If the sound is emitted equally in all directions, we can use the formula for hemispheric area, 2πrwhere r=distance from source to calculate the area.

These formulas ignore any effects from the acoustic qualities of the space in which the sound is occurring.  Many factors will affect this, such as how much sound energy the walls and ceiling will absorb or reflect.  This is determined by the material(s) of construction, the height of the ceiling, etc.

These formulas may help you get a “big picture” idea of the sound levels you might expect in applications where the input data is available.  Aside from that, they certainly put into perspective the importance of hearing protection when an analysis reveals higher levels.  OSHA puts the following limits on personnel exposure to certain noise levels:

Working in areas that exceed these levels will require hearing protection.

EXAIR’s line of Intelligent Compressed Air Products are engineered, designed, and manufactured with efficiency, safety, and noise reduction in mind.  If you’d like to talk about how we can help protect you and your folks’ hearing, call us.

 

Compressed Air and Safety

Warning

Compressed air is generally considered the fourth utility in industrial, commercial and back-yard settings.  It is used to power pneumatic equipment, cleaning surfaces, conveying materials, etc.  The compressor reduces the volume inside a chamber to increase the pressure.  The compressed air typically is contained in a reservoir tank for distribution to pneumatic equipment and devices.  Since air is a compressible fluid it has stored energy; and, if not used properly, it can be hazardous.  Most people perceive compressed air as harmless, but this is untrue.  It can be very dangerous.  Here are some potential risks when using compressed air:

  1. If the air pressure against the skin becomes greater than 30 PSI, air can penetrate through the membrane and cause an embolism which could be fatal.  The term used is Dead-End pressure, any end-use nozzle or blowoff product cannot exceed 30 PSI dead-end pressure.
  2. Hearing damage can occur from exposure to loud noises from compressed air exhausting from pneumatic equipment or devices.
  3. Proper use of Safety Air Guns and Safety Air Nozzles is a must. They should not be modified or tampered with.  For example, tying the trigger on an air gun for continuous blowing or modifying the nozzle to get a different blowing pattern.
  4. Compressed air can generate high velocities which can shoot chards of debris. The accelerated fragment can injure any part of the body even from bounce-back.
  5. If the air pressure is higher than the recommended rating for the equipment, uncontrolled eruptions can occur which can send broken pieces everywhere.
  6. When air hoses or lines are laying on the floor, near pinch points, or degrades from the environment, a break can occur causing unrestrained hose “whipping”.

Some safety precautions can be followed in your area when using compressed air products.  They may seem basic, but they are commonly overlooked.

  1. Verify that all compressed air components are rated to be used for the maximum line pressure.
  2. Use shut-off valves nearby to isolate the system from the main compressed air line.
  3. Have general inspection on your compressed air system to check for pipe degradation, leaks, faulty pneumatics, etc.
  4. When you go to repair items attached to the compressed air line, make sure to use proper lockout procedures to isolate and remove the hazardous energy.
  5. Remember that compressed air is not a toy and use proper PPE when required.
  6. If any pneumatically operated product is damaged, remove it from service and either repair it or replace it.
EXAIR Products

In 1970, Occupational Safety and Health Administration, OSHA, was enacted by the Department of Labor.  This organization was created “to ensure safe and healthful working conditions for working men and women”.  They created a set of laws and standards that they enforce with heavy fines and reoccurring visits if not followed.  The Department of Labor lists these laws under title 29 in the Code of Federal Regulations (CFR).  For general industry, these safety regulations are under part 1910 of 29 CFR.  To give a few examples, 29 CFR 1910.242b gives the explanation about dead-end pressure.  Under 29 CFR 1910.95a shows the maximum allowable noise exposure.  The reason that I noted these two OSHA standards as they are commonly overlooked with Safety Air Guns, and commonly fined by OSHA for improper nozzles.

Safety is everyone’s responsibility, and EXAIR products can be a key.  If you would like to discuss how to improve your workplace, you can contact an Application Engineer at EXAIR.     Because hazards and fines can be detrimental to your company when it comes to compressed air safety.

John Ball
Application Engineer

Email: johnball@exair.com
Twitter: @EXAIR_jb

 

Photo: Attention Warning Sign by Peter-LomasCreative Commons: CCO

 

 

EXAIR’s Soft Grip Safety Air Gun Provides Safety & Efficiency Benefits

The Soft Grip Safety Air Gun is in stock for immediate shipping and has a durable cast aluminum body that is suited for rugged industrial use.  The ergonomic design has a large trigger and a soft, comfortable grip for easy operation and keeps the hand in a comfortable position for extended periods of use. A convenient hook hanger allows for easy storage when not in use.  Aluminum Extensions (up to 72″ long) and Stay Set Hoses (up to 36″ long ) can be fitted, providing access to hard to reach places. Chip Shields are available for most models, protecting operators from flying debris, helping to meet an important part of OSHA’s requirements for the safe use of compressed air, OSHA Standard 1910.242(b).

blog_SGSAG_500x

The Soft Grip Safety Air Gun can be configured with over a dozen nozzle options, with air consumption as low as 2.5 SCFM @ 80 PSIG of supply pressure and up to 60 SCFM if needed.  Nozzle materials include Zinc Aluminum alloy, 316 Stainless Steel, and PEEK (a thermoplastic polymer.)

Use of an EXAIR Soft Grip Gun with an Engineered Air Nozzle will provide a safe and efficient use of compressed air, reduce energy costs, and eliminate harmful dead end pressures (again, helping to comply with the OSHA standard for safe use of compressed air.)

When outfitted with EXAIR’s engineered air nozzles, the Soft Grip Safety Air Gun is a powerful ally to reduce personnel noise exposure and protect them from noise induced hearing loss. This is another important safety feature complying with OSHA’s standard 29 CFR-1910.95(a).

The Soft Grip Safety Air Gun can be configured to meet applications from delicate blowoff of electronic circuit boards to large chip removal in metal cutting operations, and everything in between.

If you have questions regarding the Soft Grip Safety Air Gun, or would like to talk about any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB