EXAIR and the Hierarchy of Controls

The CDC (Center for Disease Control) published a useful guide called “Hierarchy of Controls” that details (5) different types of control methods for exposure to occupational hazards while showing the relative effectiveness of each method.

NIOSH_Hierarchy_of_Controls
Hierarchy of Controls

 

The least effective methods are Administrative Controls and Personal Protective Equipment (PPE). Administrative Controls involve making changes to the way people perform the work and promoting safe practices through training. The training could be related to correct operating procedures, keeping the workplace clean, emergency response to incidents, and personal hygiene practices, such as proper hand washing after handling hazardous materials. PPE is the least effective method because the equipment (ear plugs, gloves, respirators, etc.) can become damaged, may be uncomfortable and not used, or used incorrectly.

In the middle range of effectiveness is Engineering Controls. These controls are implemented by design changes to the equipment or process to reduce or eliminate the hazard. Good engineering controls can be very effective in protecting people regardless of the the actions and behaviors of the workers. While higher in initial cost than Administrative controls or PPE, typically operating costs are lower, and a cost saving may be realized in the long run.

The final two, Elimination and Substitution are the most effective but can be the most difficult to integrate into an existing process. If the process is still in the design phase, it may be easier and less expensive to eliminate or substitute the hazard. Elimination of the hazard would be the ultimate and most effective method, either by removing the hazard altogether, or changing the work process so the hazard is no longer part of the process.

EXAIR can help your company follow the Hierarchy of Controls, and eliminate, or substitute the hazards of compressed air use with relative ease. 

Home of Intelligent Compressed Air Products

Engineers can eliminate loud and unsafe pressure nozzles with designs that utilize quiet and intelligent compressed air products such as Air NozzlesAir Knives and Air Amplifiers. Also, unsafe existing products such as air guns, can be substituted with EXAIR engineered solutions that meet the OSHA standards 29 CFR 1910.242(b) and 29 CFR 1910.95(a).

In summary, Elimination and Substitution are the most effective methods and should be used whenever possible to reduce or eliminate the hazard and keep people safe in the workplace. EXAIR products can be easily substituted for existing, unsafe compressed air products in many cases. And to avoid the hazard altogether, remember EXAIR when designing products  or processes which require compressed air use for cooling, cleaning, ejection, and more. 

If you have questions about the Hierarchy of Controls and safe compressed air usage from any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

Hierarchy of Controls Image:  used from  Public Domain

EXAIR Digital Sound Level Meters Measure Noise Exposure Levels

slm-newlabel
Digital Sound Meter

EXAIR offers the model 9104 Digital Sound Level Meter.  It is an easy to use instrument for measuring and monitoring the sound level pressures in and around equipment and other manufacturing processes.

Sound meters convert the movement of a thin membrane due to the pressure waves of sound into an electric signal that is processed and turned into a readable output, typically in dBA.  The dBA scale is the weighted scale that most closely matches the human ear in terms of the sounds and frequencies that can be detected.

Noise induced hearing loss can be a significant problem for many workers in manufacturing and mining. To protect workers in the workplace from suffering hearing loss OSHA has set limits to the time of exposure based on the sound level.  The information in the OSHA Standard 29 CFR – 1910.95(a) is summarized below.

OSHA Noise Level

The EXAIR Digital Sound Level Meter is an accurate and responsive instrument that measures the decibel level of the sound and displays the result on the large optionally back-lit LCD display. There is an “F/S” option to provide measurement in either ‘slow’ or ‘fast’ modes for stable or quickly varying noises. The ‘Max Hold’ function will capture and hold the maximum sound level, and update if a louder sound occurs.

Certification of accuracy and calibration traceable to NIST (National Institute of Standards and Technology) is included.

If you have questions about the Digital Sound Level Meter, or would like to talk about any of the quiet EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

Minimize Exposure to Hazards Using the Hierarchy of Controls

The CDC (Center for Disease Control) published a useful guide called “Hierarchy of Controls” that details (5) different types of control methods for exposure to occupational hazards while showing the relative effectiveness of each method.

HierarchyControls
CDC Hierarchy of Controls

The least effective methods are Administrative Controls and PPE. Administrative Controls involve making changes to the way people perform the work and promoting safe practices through training. The training could be related to correct operating procedures, keeping the workplace clean, emergency response to incidents, and personal hygiene practices, such as proper hand washing after handling hazardous materials. PPE (Personal Protective Equipment) is the least effective method because the equipment (ear plugs, gloves, respirators, etc.) can become damaged, may be uncomfortable and not used, or used incorrectly.

In the middle range of effectiveness is Engineering Controls. These controls are implemented by design changes to the equipment or process to reduce or eliminate the hazard. Good engineering controls can be very effective in protecting people regardless of the the actions and behaviors of the workers. While higher in initial cost than Administrative controls or PPE, typically operating costs are lower, and a cost saving may be realized in the long run.

The final two, Elimination and Substitution are the most effective but can be the most difficult to integrate into an existing process. If the process is still in the design phase, it may be easier and less expensive to eliminate or substitute the hazard. Elimination of the hazard would be the ultimate and most effective method, either by removing the hazard altogether, or changing the work process to the hazardous task is no longer performed.

EXAIR can help your company follow the Hierarchy of Controls, and eliminate, or reduce the hazards of compressed air usage.

Engineers can eliminate loud and unsafe pressure nozzles with designs that utilize quiet and pressure safe engineered air products such as Air Nozzles, Air Knives and Air Amplifiers. Also, unsafe existing products such as air guns, can be substituted with EXAIR engineered solutions that meet the OSHA standards 29 CFR 1910.242(b) and 29 CFR 1910.95(a).

Nozzles

In summary, Elimination and Substitution are the most effective methods and should be used whenever possible to reduce or eliminate the hazard and keep people safe in the workplace.

If you have questions about the Hierarchy of Controls and safe compressed air usage from any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

What is Sound and Interesting Facts About Sound

In physics, sound is a wave of pressure. It occurs in a medium, which can be a solid, liquid or gas. Sound cannot travel through a vacuum, such as in space. The wave of pressure reaches our ears and causes the ear drum to vibrate, which then goes through a complex process to ultimately be perceived as audible sound.

There are several characteristics of sound waves that can be measured and help define the sound. A sound wave can be visualized as a repeating sinusoidal wave (see below), and can be described by these properties – frequency and wavelength, amplitude, and speed.

Sound Wave
Sound Wave

  • Frequency is the number of cycles in 1 second, and is measured in Hertz (Hz)
  • Wavelength is the distance over which 1 cycle occurs, and for audible sound is  between 17 m and 17 mm long
  • Amplitude is the measure of its change over a single period, and normally a measure of sound loudness
  • Speed is the distance traveled per unit time

The speed of sound in air can be found using the equation:  a = Sqrt (γ•R•T)

where for air:
γ = ratio of specific heats = 1.4,
R = gas constant = 286 m²/s²/K
T = absolute temperature in °K (273.15 + °C)

At room temperature, 22°C (71.6°F), the speed of sound is 343.8 m/s (760 mph)

Some interesting facts about sound:

  • Sounds generally travels faster in solids and liquids than in gases.
  • You can estimate the distance from a lightning strike by counting the seconds that pass between seeing the lightning flash and hearing the thunder.  Take this duration an divide by 5 to get the distance away, in miles.
  • Humans normally hear sound frequencies between 20 Hz and 20,000 Hz.
  • Sound waves above 20,000 Hz are known as ultrasound, and sound waves below 20 Hz are known as infrasound.
  • Sound travel through water close to 4 times faster then through air.
  • The sound of a cracking whip occurs because the speed of the tip has exceeded the speed of sound.

Sound that is too loud can be a problem. The Occupational Safety and Health Administration (OSHA) has set limits on the noise exposure that an employee can be subjected. Exceeding these values can cause permanent damage to your ears and cause noise induced hearing loss. So, knowing and reducing the sound levels within a manufacturing operation is important.

OSHA Chart

EXAIR has many products that can help reduce the sound levels in your processes.  With products such Air Knives, Air Wipes, Air Amplifiers, Air Nozzles and Jets, and Safety Air Guns, strong, quiet and efficient blowoff, drying, and cooling can be performed.

Quiet Products

If you have questions about sound and keeping your sound levels in check or any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB