Super Air Amplifiers for Cooling Injection Mold

When working with a cooling application, many customers will immediately look to the Vortex Tube and Cold Gun product lines. While this may be the best solution for some applications with smaller areas to cool, cold air from a Vortex tube based solution is not the best method for large parts or larger areas that exceed a footprint of approximately 2″ x 2″. For larger areas, we have other options for many cooling applications. EXAIR’s Super Air Amplifiers and Super Air Knives are also very effective at reducing the temperature of a part without requiring cold air.

Cooling is a relative concept based on the starting and finishing temperature. What feels “cool” to a human being does not necessarily mean the same thing as “cooling” a part or material. Due to the ability of the Super Air Knives and Super Air Amplifiers to entrain large amounts of ambient temperature air, we can move a lot of air volume across the surface of the target part and quickly lower the temperature.

A simple example I like to use is blowing on a hot cup of coffee just as its been brewed. The temperature of the air coming from your mouth is around 98.6°F, the same as your body temperature. Coffee can be as hot as 185°F when fresh. Due to the temperature differential between your breath and the hot coffee, we’re able to achieve a reasonable amount of cooling just by simply blowing across the surface. Typically, when the target temperature of the part or material needs to be around ambient temperature or higher; the best solution for cooling is going to be either a Super Air Amplifier or Super Air Knife.

Rob's I phone 877

EXAIR 5015 Cold Gun

To illustrate the above concept even more, recently I was working with a customer that needed to cool a silicon injection mold. The mold had two sides and the customer was looking for a method of cooling it down between cycles. The mold cavity surface was approximately 400°F and they wanted to get it down to around 150°F. They were familiar with the EXAIR Cold Gun as they use them across their facility in various secondary or post-molding drilling operations. They had a spare and decided to hook it up and blow the cold air across the face of the mold to see what happens. The volume of air from the Cold Gun was not enough to sufficiently cool the entire mold, so he reached out to EXAIR for assistance.

Based on the dimensions of the mold and understanding the target temperature to be 150°F, we settled on a system of (2) 120224 4” Super Air Amplifier Kits. One was placed above each side of the mold. As soon as the mold opened, they activated the Super Air Amplifiers and were able to pull the surface temperature of the mold down to an acceptable level. Time is money in any manufacturing operation. Companies that produce injection molded parts will look for any way to improve their process. By implementing a procedure to cool the mold more quickly, they are able to boost their productivity gains and become more profitable.

The Super Air Amplifier Kit comes with an Auto-Drain Filter to keep the air clean and dry, a pressure regulator to allow you to dial in the precise level of airflow, and a shim set that allows you to make gross adjustments to the flow. The Super Air Amplifier is available in (5) different sizes with ¾” up to 8” diameter outlets and flow rates from 219 SCFM to 9,000 SCFM 6″ from the outlet. They are capable of achieving an amplification ratio of up to 25:1 from the compressed air supply. The laminar airflow from the unit minimizes wind shear to produce sound levels that are typically three times quieter than other air movers. If you have an application that requires a similar type of cooling, give us a call. We’ll walk you through the process of selecting the most suitable solution.

Tyler Daniel
Application Engineer

E-mail: Tylerdaniel@exair.com
Twitter: @EXAIR_TD

EXAIR Super Air Knives Provide more Benefit than Blower Air Knives for Green Bean Processing

A customer who was experiencing some issues with a blow off process in their facility contacted EXAIR for a solution. This customer performs post-harvest processing operations on green beans and other vegetables after they’ve been picked. They were having a problem being able to remove excess moisture after the beans had been washed in cold water and keep additional moisture from forming once packaged. The process involved green beans exiting a wash cycle and moving along a belt conveyor. From there, they are dried by a series of blower style air knives. Shortly after being blown off, the beans are weighed and bagged. Once bagged, it was determined that there was too much moisture inside the package and they could not be shipped.

One common issue with blower style knives, and the fundamental issue in this application, is that the air is heated as it moves through the blower. Depending on the type of blower, outlet air temperatures in excess of 180°F are normal. The effect, in this case, was similar to a convection oven where hot air is circulated over the food to cook it. While the beans were not exposed for a long enough time to actually cook, the high temperature air exiting the blower was enough to raise the temperature of the beans. This caused additional moisture to come out from inside the beans after they were bagged and sealed. This is a condition that the customer wanted to avoid because it would lead to the beans drying out and losing their freshness which is a quality issue for the customer.

A second problem was the turbulent airflow from the blower knives causing the beans to be blown all around on the conveyor. The customer effectively had no control over how forcefully the airflow from the blower powered air knives impacted his product. They were either full-on or full-off. This resulted in less than desirable results from a dryness perspective and also caused damage to the product from the high impact disturbance of the blower air knives.

After talking it over with the customer and learning the specifics of the application, we determined that EXAIR’s Super Air Knife Kit Model 110212SS is able to address both of these issues. The airflow would be at ambient temperature, keeping the product at a desired colder temperature. The blowing force could be precisely adjusted with a pressure regulator so as not to cause damage to the product and provide a laminar airflow to strip the water from the product.

EXAIR’s Super Air Knives are available in 303 or 316 grade Stainless Steel to meet the more stringent requirements of many food grade applications. They also operate at a far lower sound level than blower powered air knives, are more compact for easier mounting, and do not involve the purchase of a blower package and associated ducting.

gh_SSSAK_750x696

Model 11006SS Stainless Steel Super Air Knife

Our Application Engineers can work closely with you to resolve any issues you may be having, even if compressed air isn’t currently a part of the process. If your process involves washing, drying, conveying, or packaging food or other products and you can relate to any of the issues above, please keep EXAIR Corporation in mind as a viable solutions provider. Contact an Application Engineer today and we’ll do our best to help you solve your application problems.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

If at First You Don’t Succeed Try, Try Again!

Over the past few weeks I’ve been going back and forth with my phone provider over some technical issues I’ve been having with the device. After some troubleshooting, we were able to conclude that the antenna has likely become loose, leading to the phone periodically not receiving service. Naturally, we’re outside of the 1-Year “Warranty” period that covers a defective device. I paid my insurance deductible and received a “refurbished” phone the following day. Unfortunately, this refurbished phone was unable to take pictures with the front-facing camera. I know what you’re thinking, how on Earth can I take selfies without a front-facing camera? So it was back to the phone provider to get another replacement, fortunately this time they sent a brand new device.

There’s nothing more frustrating than trying to get something to work right out of the box, only to experience issues. Whenever a customer is having an issue with a particular product, there’s a certain progression that we go through in order to assess the problem and determine the root cause. In some cases it is something simple, others it can be a few individual problems that are compounding each other. I recently assisted a customer that was having problems with his 110 Gallon Reversible Drum Vac System. He was having difficulty pumping water out of a container and into the 110 gallon drum. He stated that he just received the unit and was unable to get it to work.

RDV pic

EXAIR’s Reversible Drum Vac installed on a 110 Gallon Drum

This is a call that we get from time to time, and is generally remedied pretty quickly. Our first step is to check the air pressure at the inlet of the Reversible Drum Vac while it is operating. We recommend an inlet pressure of at least 80 PSIG for proper operation. By installing a pipe tee with a pressure gauge directly at the unit, we can not only verify the inlet pressure but also that the Reversible Drum Vac is being supplied with an adequate volume of compressed air. If the pressure on the gauge begins to decrease once the unit is in operation, we can conclude that the volume of compressed air to the Reversible Drum Vac is insufficient. This can be due to the use of restrictive quick disconnect fittings, improper line size, or a compressor that is undersized.

If the air supply is sufficient, we then inspect the system for vacuum leaks. If the drum does not have a complete seal, the system will not function. If there’s no vacuum leak and there is an adequate supply of compressed air, the Reversible Drum Vac likely needs to be cleaned. It took us a few tries to get there but through a little bit of trial and error, we were able to determine that this was exactly the case in this scenario. Even though the system was new, it had been supplied with compressed air that was not properly filtered. Some scale, rust and debris from the customer’s supply lines made its way into the body of the Reversible Drum Vac, impeding the flow of air. Here is a video that shows the cleaning procedure for the Reversible Drum Vac. Over time the Reversible Drum Vac can accumulate debris inside of the plenum chamber. Regular maintenance of the unit will ensure that it stays within specifications for when it’s needed most!

If you have an EXAIR product that’s not performing as well as it used to, give us a call. One of the Application Engineers will be able to walk you through the steps to ensure that you’re getting the most out of our products!

Tyler Daniel
Application Engineer
E-mail: tylerdaniel@exair.com
LinkedIn: @EXAIR_TD

Trouble Identifying an EXAIR part? Don’t worry, we’ve got you covered!

3240VT

EXAIR Model 3240H Vortex Tube with Hot Muffler Installed

 

Not a day goes by that we don’t receive a call from a customer that is having trouble identifying an EXAIR part. Due to the robust nature of our Vortex Tubes, they can be installed in applications for several years without any maintenance. When the time comes to expand that line, the labels may have worn off, the unit may be covered in grime or oil, or the personnel that originally ordered the product may no longer be with the company. In any case, one of the Application Engineers here at EXAIR will certainly be able to help!

I recently received an e-mail from a gentlemen in Indonesia who was suffering from that very problem. They had a Model 3240 Vortex Tube installed in a camera cooling application near a boiler. The engineer who designed the project was no longer with the company and they could not determine a Model number or when they had purchased it. They saw the EXAIR sticker, along with our contact information, and reached out for help. Vortex Tube’s come in different sizes, based on the available compressed air supply as well as the level of refrigeration needed. They’re available in (3) different sizes as well as Vortex Tubes for max refrigeration (R style generators) and Vortex Tubes for a maximum cold temperature (C style generators). In order to identify the Model number, you must look on the shoulder of the Vortex Tube generator. On it, there will be a stamp that indicates the generator style that is installed. In this case, the customer stated that there was a “40-R”, indicating to me that he had our Model 3240 Vortex Tube.

Our team of highly trained Application Engineers is here ready to assist you with any needs you may have regarding EXAIR products. With a little bit of investigative work, a quick discussion about the dimensions or a photo; we’re able to identify any of our products. If you’re considering expanding a current line into other parts of your facility, or perhaps adding a new location and need help identifying your EXAIR products; give an Application Engineer a call and we’ll be sure you get the right products on order!

Tyler Daniel

Application Engineer

Twitter: @EXAIR_TD

E-mail: tylerdaniel@exair.com

EXAIR Super Air Amplifiers: Saving Air, Saving Lives

 

superairamp(2)

(2) Model 120021 Super Air Amplifiers

 

I have recently had the pleasure of working with a customer developing a method of delivering air to trapped miners during a multi-man mine rescue mission. The federal government mandates that in the event of an explosion, miners must have a safe place to retreat for a minimum of 96 hours. This system will provide them with a supply of air during that period of time. In the initial stages, they had tried using some old venturis left over from a previous project. While this did work, they weren’t as effective or efficient as they needed. Through a little bit of research, they found EXAIR.

Instead of using compressed air as the source, they’re using cryogenic liquid air. That air passes through a series of cold plates and heat exchangers and gets to the Super Air Amplifier at about 70°F. This air is then carried into the chamber, giving the miners a source of clean air.

superairamp(1)

Model 120021 in prototype

 

EXAIR Super Air Amplifiers utilize a patented shim design that allows the unit to entrain ambient air at a rate of up to 25:1 from the compressed air supply. This balanced outlet airflow minimizes wind shear, producing sound levels that are typically three times quieter than other air movers. The Super Air Amplifiers are supplied with a .003” slotted air gap and can be adjusted by replacing the shim with a thicker .006” or .009” shim.

Do you have a cooling or drying application that could benefit from a Super Air Amplifier? Contact an Application Engineer today to find out how EXAIR can help you save compressed air in your application!

Tyler Daniel, Application Engineer
Tylerdaniel@exair.com
@EXAIR_TD

EXAIR Cabinet Cooler System Meets High Demands Of Sea Duty

I joined the Navy, right after high school, to get out of Ohio, see the world, and never come back. “My recruiter said” (if you are considering military service, those can be famous last words, just so you know) that I would be a good candidate for Nuclear Power School, so I took the test. As a math & science nerd scholar, I qualified for admission easily.  About halfway through Nuke School, I volunteered for submarines.  My decision was based in no small part on the sea stories of our instructors, the strong reputation of better food, and my deep appreciation for the movie “Operation Petticoat.”

Upon graduation, I was assigned to a new construction Trident submarine.  I did not see the world…I saw the Electric Boat shipyard in Groton, Connecticut, and Naval Submarine Base King’s Bay, Georgia.  Hilarity occasionally ensued, but never in the context of that movie I so adored.  I moved back to Ohio (on purpose) soon after my enlistment was up.  The food WAS good…I can unreservedly vouch for that.

In the new construction environment of the shipyard, I became quite familiar, and developed a deep respect for, the high level of attention paid to the materials and workmanship that a seagoing vessel demanded…not to mention, one with a nuclear reactor on board.  Reliability and durability are obviously key factors.

I had the pleasure recently of assisting an electrical contractor who was looking for a cooling solution for a new Variable Frequency Drive enclosure installation on a cement barge.  The ship’s engineer (a Navy veteran himself) had told the contractor that his priorities were reliability, durability, and dust exclusion.  He couldn’t have made a better case for an EXAIR Cabinet Cooling System.

Based on the specified heat load of the VFD, the size of the enclosure, and its location, a Model 4380 Thermostat Controlled NEMA 12 Cabinet Cooler System, rated at 5,600 Btu/hr, was specified.  This equipment is internal to the ship; had it been exposed to the elements, a NEMA 4X system would have been presented.

Up to 2,800 Btu/hr cooling capacity with a single Cabinet Cooler System (left) or as much as 5,600 Btu/hr with a Dual system (right.)

EXAIR Cabinet Cooler Systems have no moving parts to wear, no electric motor to burn out, and no heat transfer surfaces (like a refrigerant-based unit’s fins & tubes) to foul.  Once it’s properly installed on a sealed enclosure, the internal components never see anything but cold, clean air.

If you have a need to protect an electrical enclosure in aggressive environment, give me a call.  With a wide range of Cabinet Cooler Systems to meet a variety of needs, we’ve got the one you’re looking for, in stock and ready to ship.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

EXAIR Atomizing Spray Nozzles Make It Nice & Foggy In Greenhouses

Fog. Nobody likes driving in it. It’s downright perilous to sailing vessels on the open water, but especially those near the shore, or other watercraft. Flights get delayed or cancelled, stranding travelers in airport terminals far from home, and keeping many from pressing matters that necessitated the speed of an airline flight in the first place.  Oh, and it’s ALWAYS where the bad guy is hiding in the movies.  You can tell by the ominous low-string music that starts playing right before things get real nefarious.

You know who LIKES fog, though?  Greenhouse operators.  Their plants get plenty of water to sustain their growth from the well-irrigated soil, but the leaves & petals can wither and get discolored if the humidity isn’t kept at a high level.

The same is true for the parts of a greenhouse that folks don’t see when they’re selecting the annuals to plant on the next nice spring weekend (which we should be coming up on quite soon here!) – like the seed germination chambers.  I had the pleasure of helping a greenhouse operator recently, who needed to replace some old, and malfunctioning, nozzles in one of their germination chambers.  They were interested in the extremely fine mist that our Atomizing Spray Nozzles produce.  After some experimentation with a couple of different flow rates & patterns, they determined that the Model AW1020SS (Wide Angle Round Pattern, Internal Mix) Atomizing Spray Nozzles provided optimal results.

The fine, atomized mist (left) produced by the EXAIR AW1020SS (right) optimizes the seed germination in this chamber.

The fine, atomized mist (left) produced by the EXAIR AW1020SS (right) optimizes the seed germination in this chamber.

As the fogging systems in their other chambers start to fail, they’ve been replacing them with the AW1020SS’.  We shipped them two earlier this week.

With (90) distinct models to choose from, we’ve got the solution to your liquid spraying application.

EXAIR Atomizing Spray Nozzles offer an incredibly wide range of flow rates, patterns, and adjustability to suit most any application that requires a fine liquid mist.  If you’d like to find out more, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

%d bloggers like this: