How To Solve A Problem with Compressed Air

In my (almost) six years as an EXAIR Application Engineer, I’ve learned a great many things about the capabilities of our products.  The way we do business sure does make it easy:

  • We readily share application information, as a team.  If you ask me a question, you’re asking all of us.  It does neither of us any good if I tell you something MIGHT work if one of my team knows it WON’T – or if someone knows what else DOES work.  If we can offer a solution, we will.
  • We’ll test your product, free of charge.  This is a popular way of finding out which Line Vac is best for conveying a particular product, for example.
  • If you’re considering a quiet, safe, and efficient EXAIR product as an upgrade, we’ll test your current product in our award winning Efficiency Lab, so you can compare accurate performance data and analyze the expected benefits…which can be dramatic.  Try us on that.
exair-testin
Line Vac conveyance rate testing (left;) Efficiency Lab testing (right.)

 

  • We’ll let YOU test our product, risk-free.  All catalog products come with a 30 Day Unconditional Guarantee.  We invite you to put it through its paces for up to a month.  If it’s not working out, we’ll arrange return for full credit.
  • We’ll do the math.  But first, a disclaimer: strictly comparing the force or flow of an engineered product to an open-end blow off won’t always tell the tale.  Our Intelligent Compressed Air Products are creating a laminar flow which won’t generate as high of a force/thrust as open-end blowing (which is turbulent by nature,) but is MUCH more conducive to efficiency and noise reduction, as well as similar (if not improved) performance.  But back to the math: if you know the metrics you need to meet for spot cooling (like a Vortex Tube, Adjustable Spot Cooler, Cold Gun, etc.) or for liquid spraying (the liquid flow rate and/or pattern size & shape from an Atomizing Spray Nozzle, for instance,) or the heat load that a Cabinet Cooler System can handle, we’ll do the calculations and specify the appropriate product.

Regardless of the application, if it can be solved with compressed air, it’s very likely that we have a great solution.  Call me to find out how we can help.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Video Blog: How To Clean & Replace Emitter Points for the Ion Air Gun & Ion Air Jet

This video will give a thorough walk-through on how to clean the emitter point on EXAIR Ion Air Jets model 8194 and Ion Air Guns model 8193.  This is the same procedure for replacing a damaged emitter point.  This procedure is for new style Static Eliminators with integrated grounded terminals, released on February 1, 2016.

Brian Farno
Application Engineer Manager
BrianFarno@EXAIR.com
@EXAIR_BF

Where Does 25 Cents For 1,000 Standard Cubic Feet Of Air Come From?

Wasting compressed air 2

Being an Application Engineer at EXAIR you tend to do a good amount of return on investment (ROI) calculations.   This is mainly to tell customers just how fast installing an EXAIR product on their system is going to pay its purchase price back and start saving them money.

In order to do these calculations there are several variables we must know.   The list is below.

  • Cost of EXAIR Product (This is an easy one for us to know.)
  • EXAIR Product Consumption (Another easy one!)
  • Current Product Consumption (If this is an unknown, we will test it for free!)
  • Cost of Compressed Air / 1,000 SCF (This is the most common unknown.)

With these four variables we can calculate the amount of air and the amount of money the EXAIR product will save over an existing non-engineered blowoff.   Let me address the two variables which have to come from you, the customer.

Current Product Consumption – If this value is not known please don’t guess at it.  We offer a free service which we refer to as our Efficiency Lab where you send us in your existing blowoff device and we will test it for force flow and noise level.   If you don’t know what pressure you are operating the piece at we will help you find out how to get that and then we will test our products at the same pressures.   This way you get a true apple to apples comparison.   Then, once we are done testing, you will get a recommendation from us in a formal report as to what EXAIR product will best replace your existing product.  Then we will pay for return shipping of your blowoff device back to you. So, if you don’t know how much air you are currently using then give us a call.  We will figure it out for you.

Efficiency Lab
The EXAIR Efficiency Lab is FREE!

Cost of Compressed Air/ 1,000 SCF – This is more often than not, the unknown variable in the equation.  The good news is there is a general standard assumption of twenty-five cents per 1,000 Standard Cubic Feet of compressed air.   This works out to be around 8 cents per kW/hr.  So even if you don’t know what you pay to compress the air, if you know what you are paying per kilowatt hour for your energy then we can calculate within reason what it costs for you to generate your compressed air. For reference, 8 cents per kilowatt-hour falls between the average US cost per kilowatt hour for commercial end-users (10.7/kWh) and industrial end-users (6.9/kWh).*

The best part of all is…EXAIR has a calculator available right on our website which provides air and dollar savings per minute, hour day and year as well as a payback in days for the EXAIR product purchase. On top of that, any step along the way that you aren’t sure of, we will help you out for free, even testing your product!

In case you would like to see the math, the formula used is below.

Basic Equation To Go From Cost Per kiloWatt Hour to Cost Per 1,000 Standard Cubic Feet of Compressed Air
Basic equation to go from Cost Per kiloWatt Hour to Cost Per 1,000 Standard Cubic Feet of Compressed Air

Brian Farno
Application Engineer Manager
BrianFarno@EXAIR.com
@EXAIR_BF

*latest U.S. EIA report here

 

 

 

Need More Capacity? Start By Finding it in House or Renting

I field a decent number of calls from companies that are trying to expand to new lines or venture into an area of production that they have not crossed into before.  Maybe it is bringing a process in-house that they traditionally outsourced, or altering a process that now requires a large scale blow off operation. In many cases, as these companies grow and succeed, their compressed air systems grow with them. Some of them need to find out find out how much air they will need if when they make decisions to bring processes in house or expand a current process.

One of the first options when needing more capacity from your current compressed air system is to take a look at the existing demand side and determine if we can free up enough supply to meet the requirements of this new option.   Let’s say for instance a new 60″ Super Air Knife is needed.   To test that unit at 80 psig inlet pressure we would need to free up 174 SCFM of compressed air. In all the years we have been around it is still surprising to consult with customers who are using large numbers of open blow-offs, homemade air knives, coolant hoses and nozzles for compressed air etc. These companies can find that extra capacity in their current systems by retrofitting engineered solutions on to the aforementioned poor solutions for keeping compressed air efficient. IF you are using some of those solutions, call EXAIR today to find out how much air our products may save you.

In the event that is not possible to find the necessary new volume of compressed air by streamlining your current system, it means looking at adding compressor capacity.  Some companies think they have to go out to buy a new compressor immediately, simply to test this new process.   That is more often than not, false.   The best recommendation I have is to look into renting a compressor, much like the one shown below.

A Rental Tow Behind Air Compressor
A Rental Tow Behind Air Compressor
The compressor distribution piping.
The compressor distribution piping.

I saw this unit while I was jogging, well attempting to jog, on my lunch break.  This was outside a local company that apparently, going through a very similar scenario like I mentioned above.  When I looked a little closer, I noticed the unit included around a 75-100′ of hose that did not use the dreaded quick disconnect fittings everyone sees.  Instead it utilized what I know as a Chicago style air fitting which does not restrict the air flow nearly as much as a quick disconnect and permits you to utilize the largest volume of compressed air from the compressor – remember folks: properly sized compressed air lines and fittings are extremely important when needing to keep volume and pressure of compressed air at high levels.

A Chicago Style Air Fitting
A Chicago Style Air Fitting

 

Once I looked up the statistics on the compressor I found that it will generate up to 375 CFM at 150 psig.  This is more than enough to test or run a 60″ Super Air Knife and validate whether additional compressors are needed, as well as if the Super Air Knife will perform to meet your needs.   Then, when you are done with the test, you can simply return the air compressor. Based on the results of this test, this could be another point to decide if you could save the needed air from your current system or if you would require a new compressor.

The EXAIR Guarantee
The EXAIR Guarantee

The moral that I am trying to instill in this blog is simple.  If you have a need for more compressed air to validate a new or improved process, don’t hesitate to think outside of your existing system. Where there is a will and a need, there is a way.  If it doesn’t work, take advantage of our 30 day unconditional trial.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Testing A Freeze Out Valve

I recently had a customer contact me about an application where they were testing freeze out valves that go on the exterior of a locomotive.  The valve would be holding back about 45 psi of water in the pipe, and should open when the valve temperature reaches 35°F.  This would be used to keep any of the coolant / water lines from freezing during outdoor storage.

Mechanical Thermostat

The customer was using a chemical spray to freeze the mechanical thermostat and test that the valve opens.  Recently, an operator that was testing the valve used the wrong chemical and was hospitalized due to exposure so they decided it was time to change their testing method.

The customer purchased a Cold Gun Aircoolant System from our website, however, their compressed air temperature was 85-90°F and the Cold Gun is preset for a 50°F temperature drop at 100 PSIG inlet pressure. This means it wouldn’t quite reach the 35°F target reliably. Fortunately, EXAIR has a number of cooling products to cover an wide array of applications and our Adjustable Spot Cooler fit the application well since it can be adjusted to achieve much colder temperatures, up to a 100°F temperature drop from compressed air temperature.

EXAIR performed a test for the customer with the 25 SCFM generator installed and operated at 100 psig inlet pressure.   The valve was kept at a room temperature of 71°F and the compressed air inlet temperature was approximately 72°F.  The result was the valve would open in just under a minute.  This was even faster than the chemical test and it is adjustable to allow for the variance in the ambient temps. Success!

If you have any questions about how to use an Adjustable Spot Cooler in your application, please let me know.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Strengths & Weaknesses

scan-tron-you-know-you-think-of-guitar-hero-when-you-see-it-883ec4

I currently took a test that I had been referred to which tells you your strengths and characteristics.  The test was timed and had 177 multiple choice questions.  After taking the test, I was given the top 5 qualities that I possess.  When I shared these strengths with my wife she did exactly what I was told she would do.  She laughed like crazy.
test-anxiety

The great thing about the strengths that I possess is that not a single other person in the Engineering Department at EXAIR has the same strength / characteristics.  This is why we are able to work together as a team so well.  We rely on each other to pick up where one leaves off and support the areas where one of us may need a hand.

In case you don’t believe me that we are all different, just look at our Twitter accounts.  The only likeness they share is the name.

@EXAIR
@EXAIR_KE
@EXAIR_JP
@EXAIR_NR
@EXAIR_RB
@EXAIR_LE
@EXAIR_BF
@ProfPenurious

We each send out tweets and even blog about our own interests.  When it comes to helping the customer that is calling in we are all on the same page. Save them as much compressed air, time, and money, as we can.  If I can’t visualize or help a customer with their application, then I am going to take it to one of the other Engineers who can.  This is the same approach that each one of us takes to get the best product for the job into the customers hands.

We’re all here for the same goal, help the customer and supply them with not only the highest level of customer service, but also the highest quality, and most efficient, product.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Go OSHA Safe & Save Money in the Process

Another customer has contacted EXAIR and taken advantage of our FREE Efficiency Lab.  This customer has approximately 150 homemade magnetic blow offs throughout their facility.  They are being used to help move and push paper down the lines.

This unit was taken into the lab and put through the paces. The first being flow; The drilled hole in the pipe plug measured out to be a .061″ diameter hole.  The customers operating pressure for these units is 50 PSIG, so all testing was performed at 50 PSI at the unit.  The unit was flowing 3.46 SCFM per nozzle.   We then tested the sound level, at a distance of 3′ the unit measured 77.5 dBA, then force measured  3.2 oz at 12″ away from the homemade blow off.

Because the homemade blow off was a 1/8″ MNPT pipe plug it’s extremely easy to replace the unit with one of our Atto Super Air Nozzles.  The Atto Super Air Nozzle is a good fit for this application, even with a slightly lower force value, since we have determined the application can be successful at lower force values. The Atto Super Air Nozzle will also produce OSHA compliance for this blow off process. For this application the Atto Super Air Nozzle was tested at 50 PSIG inlet pressure and consumed 1.89 SCFM, created a 63.5 dBA noise level, along with gave 1.6 oz. of force 12″ away.

This calculates to saving 1.57 SCFM per nozzle, reducing the ambient noise level by 14 dBA, and still being able to get the job done.  When you calculate the savings for all 150 nozzles being operated at once the customer will save $3.53 per hour of operation.  Considering these nozzles run whenever  product is present that means the customer will save $28.26 per 8 hour day.

On top of the cost savings the customer gains the safety of the Atto Super Air Nozzle.  Their original blowoff device does not meet or exceed the OSHA standard for 30 PSI dead-end pressure.  Because the piece has a single hole the risk of an air embolism is there.  With the EXAIR Pico Super Air Nozzle we meet or exceed the OSHA standard for dead-end pressure to help keep the operators safe and in a quieter environment.

If you would like to take advantage of the EXAIR Efficiency Lab feel free to fill out the form and then send in your sample.  We’ll get it tested and give you a full report on how we can help.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF