Have You Ever Had a Bad Hookup?

Now that I have your attention I can assure you I am only going to talk about compressed air.  At a compressed air seminar I attended yesterday, I saw many images of poorly connected air lines and fittings. The majority of the cases I saw all boiled down to one common denominator.  See if you can find anything wrong with the pictures below and then we’ll get into it.

The first picture shows the easy way to hook up a regulator and make it easy to take apart.   The issue is the quick disconnects may make it easy to hook something up or take the regulator out for maintenance but you are also restricting your flow considerably.  If you were to hook a Soft Grip Safety Air Gun up at the end of the line you would be limiting the amount of air you can flow to the gun before it even gets to the regulator.   The correct way to plumb this system would be to have a larger supply line and then have the regulator as close to the point of use as possible.  Also if you are setting all the regulators throughout your facility to the same point, i.e. 80 PSIG, then why pay to generate more at the source.  Reduce your compressor output to 80-90 PSIG.

The second picture has a lot going on and again the main problem here is all the leech hoses from the manifold are the same size, if not bigger than the supply line.  Not to mention the line that goes from one port on the manifold back to another port on it.  This means as soon as you turn on one leg of that manifold you might be at the capacity for that line and starving other processes.

The answer isn’t installing more compressors, the answer is to utilize the compressed air wisely making sure your system is plumbed properly.   We preach it every day here and can’t stress it enough.  If you have questions about your compressed air application or how to approach it, don’t hesitate to contact us.

Enjoy the weekend everybody!

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Top 6 Compressed Air Plumbing Mistakes and How to Avoid Them

When installing a compressed air driven device, there is almost nothing more important than proper plumbing.  Inadequate compressed air supply can cause performance issues which lead to rejected product or machine slowdown.  In each of these cases, the end result is a loss in productivity and profitability.

At EXAIR, we understand the ins and outs of proper compressed air plumbing.  Over time, I’ve made a list of the most common plumbing mistakes and how to avoid them.

  1. Quick disconnects:  While tempting and lighting fast, these fittings can limit the amount of compressed air delivered through the orifice of the fitting.  If you have performance concerns, check for pressure drops across a quick disconnect fitting.
  2. Inadequate line size:  Think of the compressed air line as a water hose.  If the hose gets too long or is restricted or too small, there won’t be enough force and flow to do any work.  Many compressed air installations use schedule 40 pipe, and the ID and OD dimensions of this pipe are not always what you would think.  Engineering Toolbox is a favorite site of mine and they have a handy chart about Schedule 40 pipe here.  Always make sure the compressed air line can flow enough air volume for the application.
  3. Pressure drops:  Both of the above mentioned problems are essentially pressure drop related issues, but often there are oversights such as the distance of the compressed air line.  As the length of the line increases, the pressure drop will increase.  Imagine trying to blow air through a 1 ft section of garden hose.  Not too hard, right.  Now imagine trying to blow through 50 ft of garden hose.  No matter how hard you try, all the energy will be lost along the length of the hose.  Double check your line lengths and corresponding pressure drops.
  4. No gauges:  If you’re operating a compressed air device and you depend on that unit for proper production, it is imperative to know the operating pressure at the unit.  This is why EXAIR includes pressure gauges with any kit containing a pressure regulator.  There may be 110 PSIG available at the main line, but a gauge at the device will register pressure to the device, which will generally be slightly lower. (This is also helpful to locate any of the aforementioned pressure drops)
  5. Excessive piping bends:  Each bend in a compressed air line (especially 90° bends) removes energy from the compressed air.  Make sure the line to the point of use is as direct and free as possible.
  6. PSI vs. SCFM:  When sizing a compressed air device or system, it’s important to size based on the SCFM and PSI ratings of the compressor.  A compressor that produces 100 PSI cannot necessarily operate any device that requires 100 PSI.  Be sure your compressor has adequate PSI and SCFM ratings for the needs of the application.

As a general rule, we always advise to consult with an EXAIR Application Engineer regarding application specific questions.  Whether product orientation or plumbing, we are always available to answer your questions.

Lee Evans
Application Engineer
leeevans@exair.com
@EXAIR_LE