Estimating the Cost of Compressed Air Systems Leaks

Leaks in a compressed air system can waste thousands of dollars of electricity per year. In fact, in many plants, the leakage can account for up to 30% of the total operational cost of the compressor. Some of the most common areas where you might find a leak would be at connection joints like valves, unions, couplings, fittings, etc. This not only wastes energy but it can also cause the compressed air system to lose pressure which reduces the end use product’s performance, like an air operated actuator being unable to close a valve, for instance.

One way to estimate how much leakage a system has is to turn off all of the point-of-use devices / pneumatic tools, then start the compressor and record the average time it takes for the compressor to cycle on and off. The total percentage of leakage can be calculated as follows:

Percentage = [(T x 100) / (T + t)]

T = on time in minutes
t = off time in minutes

The percentage of compressor capacity that is lost should be under 10% for a system that is properly maintained.

Another method to calculate the amount of leakage in a system is by using a downstream pressure gauge from a receiver tank. You would need to know the total volume in the system at this point though to accurately estimate the leakage. As the compressor starts to cycle on,  you want to allow the system to reach the nominal operating pressure for the process and record the length of time it takes for the pressure to drop to a lower level. As stated above, any leakage more than 10% shows that improvements could be made in the system.

Formula:

(V x (P1 – P2) / T x 14.7) x 1.25

V= Volumetric Flow (CFM)
P1 = Operating Pressure (PSIG)
P2 =  Lower Pressure (PSIG)
T = Time (minutes)
14.7 = Atmospheric Pressure
1.25 = correction factor to figure the amount of leakage as the pressure drops in the system

Now that we’ve covered how to estimate the amount of leakage there might be in a system, we can now look at the cost of a leak. For this example, we will consider a leak point to be the equivalent to a 1/16″ diameter hole.

A 1/16″ diameter hole is going to flow close to 3.8 SCFM @ 80 PSIG supply pressure. An industrial sized air compressor uses about 1 horsepower of energy to make roughly 4 SCFM of compressed air. Many plants know their actual energy costs but if not, a reasonable average to use is $0.25/1,000 SCF generated.

Calculation :

3.8 SCFM (consumed) x 60 minutes x $ 0.25 divided by 1,000 SCF

= $ 0.06 per hour
= $ 0.48 per 8 hour work shift
= $ 2.40 per 5-day work week
= $ 124.80 per year (based on 52 weeks)

As you can see, that’s a lot of money and energy being lost to just one small leak. More than likely, this wouldn’t be the only leak in the system so it wouldn’t take long for the cost to quickly add up for several leaks of this size.

If you’d like to discuss how EXAIR products can help identify and locate costly leaks in your compressed air system, please contact one of our application engineers at 800-903-9247.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

 

 

 

 

Calculating Compressed Air Cost & Savings Made Easy

If you have ever looked through our catalog, website, blog, twitter feeds, or even our Facebook page, you will see that we can almost always put a dollar amount behind the amount of compressed air you saved by installing EXAIR’s Intelligent Compressed Air Products.   No matter which platform we use to deliver the message, we use the same value for the cost of compressed air which is $.25 per 1,000 Standard Cubic Feet of compressed air. This value is derived from average commercial and industrial energy costs nationwide, if you are on either coast this value may increase slightly. On the positive side, if your cost for compressed air is a bit more, installing an EXAIR product will increase your savings.

So where does this number come from?   I can tell you this much, we didn’t let the marketing department or anyone in Accounting make it up.   This is a number that the Engineering department has deemed feasible and is accurate.

To calculate the amount we first look to what the cost per kilowatt hour is you pay for energy.  Then we will need to know what the compressor shaft horsepower  of the compressor is, plus the run time percentage, the percentage at full-load, and the motor efficiency.

If you don’t have all of these values, no worries.   We can get fairly close by using the industry accepted standard mentioned above, or use some other general standards if all you know is the cost of your electricity.

The way to calculate the cost of compressed air is not an intense mathematical equation like you might think.  The best part is, you don’t even have to worry about doing any of the math shown below because you can contact us and we can work through it for you.

If you prefer to have us compare your current compressed air blow off or application method to one of our engineered products, we can do that AND provide you a report which includes side by side performance comparisons (volume of flow, noise, force) and dollar savings. This refers to our free Efficiency Lab service.

EXAIR's Efficiency Lab is a free service to all US customers.
EXAIR’s Efficiency Lab is a free service to all US customers.

If you already know how much air you are using, you can use the Air Savings Calculators (USD or Euro) within our website’s knowledge base. Just plug in the numbers (EXAIR product data is found on our website or just contact us) and receive air savings per minute, hour, day and year. We also present a simple ROI payback time in days.

Now, back to the math behind our calculation.
Cost ($) =
(bhp) x (0.746) x (#of operating hours) x ($/kWh) x (% time) x ( % full load bhp)
——————————————————————————————————————————
Motor Efficiency

Where:
bhp
— Compressor shaft horsepower (generally higher than motor nameplate Hp)
0.746 – conversion between hp and KW
Percent Time — percentage of time running at this operating level
Percent full-load bhp — bhp as percentage of full load bhp at this operating level
Motor Efficiency — motor efficiency at this operating level

For an average facility here in the Midwest $0.25/1,000 SCF of compressed air is accurate.   If you would like to attempt the calculation and or share with us your findings, please reach out to us.   If you need help, we are happy to assist.

Brian Farno
Application Engineer Manager
BrianFarno@EXAIR.com
@EXAIR_BF