The Importance of Compressed Air Filters

The last home I purchased had an all-seasons room, but the sellers told me the air conditioner that controlled the room temperature wasn’t working. When I moved in and tested the unit, the sellers were correct that it did not run. I started breaking it down and thought that maybe it could use a good cleaning. During this I found the filter, black and covered with pet fur. It was a washable filter so I cleaned it and let it air dry as I continued to clean remaining areas of the unit. When I put the filter back in and tried running the unit it was a miracle, it was running and producing cool air. I did nothing other than clean and clear the filter, no replacement parts, no tweaking and no repairmen.

I tell this story to many people now as it also relates to appliances, cars, lawn mowers and now I emphasize filters for compressed air systems. Using auto drain filters and oil removal filters is imperative to keeping your air clean before it gets to your tooling and equipment. Keeping water condensate and particulates contained to your filters is critical to the operation and life of your tooling and equipment. Older compressed air lines can begin to rust or corrode inside, creating scale which can jam and cause inefficiencies. Sediment and other contaminants will build up and could cause damage to your compressed air systems.

Good engineering practice calls for point of use filtration and moisture removal, such as that provided by EXAIR Filter Separators.

EXAIR carries multiple sizes and types of compressed air filters available from stock. Our Particulate and Coalescing filters can be found in our catalog and online (use the link above). If you have an application and need help selecting and sizing the right filter for your needs please contact one of our application engineers by calling 800.903.9247.

Eric Kuhnash
Application Engineer
E-mail: EricKuhnash@exair.com
Twitter: Twitter: @EXAIR_EK

Issues and Problems with Pressure Drop

 

Super Air Knife Install Sheet

Pressure drop comes in different forms, and it causes inefficiencies within your pneumatic system.  EXAIR writes statements in the installation manuals to help find the correct pipe sizes to supply the different products.  (Reference Super Air Knife Installation Manual above).   But there are other areas that can affect the performance.  These can be fittings, tubing, valves, and accessories.  In this blog, I will cover some pitfalls that can minimize the potential of your EXAIR products.

Pressure drop by definition is a difference or loss in pressure.  A properly sized Filter Separator will typically have a pressure drop of 5 PSID (0.3 bar) at the rated conditions.  So, if you start with 100 PSIG (6.9 bar), the air pressure after the filter separator will be 95 PSIG (6.6 bar).  But what happens when a filter separator is undersized or too small?  The pressure drop will be much higher.  So, if the pressure drop is 30 PSID (2 bar), then the downstream air pressure will only be 70 PSIG (4.8 bar).  At that pressure, you may not be able to get the performance that is required to do the job.

The first thing in determining these potential issues is what I like to call forensics.  If you can install a pressure gage at the inlet of any EXAIR product, then you can deduce if a potential problem is within your setup.   For example, if the Pressure Regulator is at 100 PSIG (6.9 bar), and the pressure gauge at the inlet is reading only 60 PSIG (4.1 bar), then there is a pressure drop of 40 PSID (2.8 bar) between these two points.  You can look in this area for the problem or problems.  If the gauge on the Pressure Regulator goes down as well when you are operating, then the problem area is upstream of the Pressure Regulator.  This can be from the pipe size or the air compressor.

The most common issues are fittings and tubing.  With fittings, small openings may not allow enough air to pass through.  Above is a photo of some typical fittings.  You notice that the right side of the chart has large enough openings to decrease pressure drop.  In some instances, quick connect fittings are commonly used to easily connect or disconnect pneumatic devices; but if you use too small or too many of these fittings, they can cause a large pressure drop.

The other problem is with the inner diameter of tubing, hoses, or pipes that are not properly sized.  Russ Bowman, a colleague, created a video showing the issues with improperly sized plumbing.  It is a very interesting video that shows the effect on a Super Air Knife.

If you want to get the most from your EXAIR products, you will need to reduce the amount of pressure drop in your system.  Pressure drop is wasted energy and can affect your pneumatic system.  You can follow my recommendations above.  Or if you would like to discuss your setup with an Application Engineer, we will be happy to assist.

John Ball
Application Engineer

Email: johnball@exair.com
Twitter: @EXAIR_jb

Preventative Maintenance for EXAIR Filters

Good engineering practice calls for point of use filtration and moisture removal, such as that provided by EXAIR Filter Separators.

I read a white paper from Parker Hannifin about compressed air filters.  The idea behind the paper was to remember your filter replacements.  Compressed air can be dirty with water, oil, pipe scale, etc.  As the filters capture the contamination, it will start to build pressure drop.  Remember, pressure drop is a waste of energy in your compressed air system.

Majority of EXAIR products use compressed air for cleaning, cooling, conveying, static elimination, coating and more.  To help keep them running efficiently, it is important to supply them with clean, dry, pressurized air.  EXAIR offers a line of Filter Separators and Oil Removal Filters to supply quality air to your equipment.  In this blog, I will explain the two types of filters that we carry and the maintenance requirements.  Filters and preventative measures can play an important part in your compressed air system.

Filter Separators are used to remove bulk liquid and contamination from the compressed air stream.  They utilize a 5-micron filter with a mechanical separation to help remove large amounts of dirt and water.  This type of filter would be considered the minimum requirement for filtration.  Most of the Filter Separators come with an auto-drain to automatically dispense the collection of oil and water.  EXAIR offers a variety of port sizes and flow ranges to meet your pneumatic flow requirement.  For maintenance, the filter elements should be changed once a year or when the pressure drop reaches 10 PSID (0.7 bar), whichever comes first.  I created a list in Table 1 below showing the correct replacement element kits for each model number.  And for any reason, if the bowl or internal components get damaged, we also have Rebuild Kits as well.  Just remember, the air quality is very important for longevity and functionality of your pneumatic systems and even for EXAIR products.

The Oil Removal Filters can make your compressed air even cleaner.  They work great at removing very small particles of dirt and oil.  They are made from glass fibers and can remove particles down to 0.03 micron.  They are designed to collect small particles and to coalesce the liquid particles into a large droplet for gravity to remove.  Because of the fine matrix, Oil Removal Filters are not great for bulk separation.  If you have a system with lots of oil and water, I would recommend to use the Filter Separator upstream of the Oil Removal Filter.  As with the Filter Separator, the filter element should be changed once a year or at a pressure drop of 10 PSID (0.7 bar).  EXAIR also offers a variety of port sizes and flow ranges.  Table 1 below shows the replacement Element Kits as well as the Rebuild Kits.  If the application requires very clean compressed air, the Oil Removal Filter should be used.

Table 1

By using EXAIR filters, they will clean your compressed air to prevent contamination on parts, performance issues, and premature failures.  As an ounce of prevention, you should add the replacement elements in stock and enter them in your preventative maintenance program.  With quality air, your pneumatic system and EXAIR products will provide you with effective, long-lasting performance without any maintenance downtime.  If you would like to discuss the correct type of filters to use in your application, you can speak with an Application Engineer.  We will be happy to help you.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Do I Have To Install A Compressed Air Filter?

2″ Heavy Duty Line Vac Kit – Model 152200

Recently I took a call from an existing customer that is questioning their Heavy Duty Line Vac Kit setup. They are experiencing around a 38 psig pressure drop from before the filter in the system to the inlet of the Line Vac.  At first glance, they assumed this was due to the filter restricting the flow. They then posed the question, “Do I have to run this filter or can I take it out?  I mean I already have a filter at my compressor.” The answer is yes, install the filter. It will keep dirt, scale and condensate from entering the Line Vac or other components downstream. In the case of a Line Vac, a filter will also prevent this unwanted debris from getting into the material being conveyed.

Example of an Improper Filter Setup

However, this is a great question, especially when assuming the filter is causing the pressure drop – but that was not the case for this application.  So more questions were asked to our customer to determine what the root cause of the pressure drop could be. Seeing a pressure drop across a filter can be caused by several factors.

One would be an inappropriately sized filter. This can restrict the volumetric flow of air through to the point of use causing a pressure drop.  All of the filters supplied with our product kits are auto-drain, have 5 micron filter elements and appropriately sized to operate the product at 80 psig inlet pressure so this was not the problem.

The next issue could be that the filter is clogged, this brought on another question.  If you see more than a 5 psig pressure drop across a filter from EXAIR then we suggest changing out the filter element as it could be clogged and not permitting the full volumetric flow through.  This installation was fairly new and a quick test without a filter element installed proved it was not the filter element that was clogged.

That brought us to the last variable, the length, size, and number/type of fittings between the filter and the Heavy Duty Line Vac. This length of pipe was more than 30′ in length and was only appropriately sized for a 10′ length or shorter run.  The customer was using a 1/2″ Schedule 40 black iron pipe to feed a 2″ Heavy Duty Line Vac at 80 psig inlet pressure. The 2″ Heavy Duty Line Vac Kit will utilize 75 SCFM at 80 psig inlet pressure.  That will need a 1/2″ Sched. 40 pipe that is 10′ long or less in order to not have friction loss within the feed pipe.  Armed with this information the customer is researching whether or not the line needs to stay that long.  If it does, they will have to re-plumb the system with a minimum of a 3/4″ Sched. 40 black iron pipe.

Luckily this was all able to be discussed within a few hours of time and the customer is on their way to an optimal supply system for their in-line conveyor.  One brief phone call took this customer from lackluster performance and thinking a product was not going to work for what they need, to performing beyond their expectations, and being able to keep up with their production needs.

If you have a product or any part of your compressed air system that you question why it may be performing or not performing a certain way, please do not hesitate to reach out to our knowledgeable team of Application Engineers. We are always interested in finding a solution to your needs.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF