Take It All In – Just Filter It

The Nose – Only the Nose Knows

Take a nice deep breath as you read this. In through the nose. If you are like me right now, due to Fall allergies you’ll have a little bit of a restriction, hold it for just a second and then breathe out through the mouth. The body is an amazing thing, when we breathe in through our nose the body has some natural filtration built in that is also known as nose hair. While not the most attractive thing to most, it is important. The hairs in the nose help to filter out allergens and catch foreign debris.

An Improperly maintained Cabin Air Filter on a car makes a great bed for mice

Other items you interact with daily have similar air intake filtration. A car often has both an intake air filter and even an in-cabin air filter, these both protect various parts. The engine air filter is vital to prevent dust, debris and even excessive water from entering into the precision machined and assembled motor. The HVAC system in every business or home generally has an intake air filter in order to protect the coils and heater box.

There’s another system in most manufacturing facilities that should always have a filter on it, and that is the compressed air system. Properly maintaining and filtering the incoming ambient air feed before it is compressed starts the process of on the right foot to optimize performance and insure efficiency is maintained from the start of the entire process. These filters are like many others and can be part of a preventative maintenance program. The air compressor manufacturer will have a recommendation on frequency for the various types.

Old Piston driven air compressor intake air filter.

If these filters are left unchanged then the compressor begins to have restricted flow on the intake which then results in less air being pulled in or maybe the filter is removed and then the debris all gets pulled in and sent through to become foreign debris inside the compressor. Both of these will cause the compressor to wear or overheat and work harder to compress the air and send it into the storage tank. This results in premature maintenance needed on the compressors and or point of use devices.

Thus, always filter your incoming air. Whether for your air compressor, car engine, or house, start with a fresh intake and then keep it optimized from there. The payback will be longer lasting equipment that operates at a higher efficiency. And remember, breathe in through your nose.

If you would like to discuss your filtration setups, feel free to reach out to an Application Engineer.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Filtered Compressed Air is the Best Compressed Air: Three Filter Types

When you are using compressed air to Clean, Cool, and or Dry products in production the quality of compressed air you are using is very important. You wouldn’t want to be blowing oil or condensation from your compressed air onto a surface you are trying to dry. Or blowing debris on a surface you are trying to clean.

The most common type of oil removal filter uses a coalescing element.  Oil entrained in pressurized gas flow isn’t as dense as water – so centrifugal elements won’t remove it – and it tends to act like particulate…but very fine particulate – so typical sintered particulate elements won’t remove it.  Coalescing elements, however, are made of a tight fiber mesh.  This not only catches any trace of oil in the air flow, but also much finer particulate than those sintered elements.  EXAIR Oil Removal Filters, like the Model 9027 , provide additional particulate filtration to 0.03 microns.  That’s some pretty clean air.

Dry Particulate Filters: Dry particulate filters are usually employed to remove desiccant particles after an adsorption dryer. They can also be implemented at point of use to remove any corrosion particles from the compressed air. Dry particulate filters operate in a similar manner as a coalescing filter, capturing and retaining particles within the filter media.

The particulate element captures solids larger than 5 microns, and the centrifugal element eliminates moisture.

Coalescing Filters: Coalescing filters are used for removing water and aerosols. Small droplets are caught in a filter media and merged into larger droplets that are then taken out of the filter. A re-entrainment barrier prevents these droplets from reentering the air. Most of the liquid coalescing filters remove is water and oil. These filters also remove particulates from compressed air, trapping them within the filter media, which can lead to pressure drops if not changed regularly. Coalescing filters remove most contaminants very well.

The coalescing element catches oil and very fine particulate

Adsorption Filters: Vapor removal filters are typically used to remove gaseous lubricants that will go through the coalescing filter. Because they use an adsorption process, vapor removal filters should not be used to capture lubricant aerosols. Aerosols will quickly saturate the filter, rendering it useless in a matter of hours. Sending air through a coalescing filter prior to the vapor removal filter will prevent this damage. The adsorption process uses activated carbon granules, carbon cloth or paper to capture and remove contaminants. Activated charcoal is the most common filter media because it has a large open pore structure; a handful of activated charcoal has the surface area of a football field.

Knowing the needs of your compressed air system can help you chose the right filter. If your air needs a high level of filtration or basic contaminants removed, cleaning your air is an important step in the compressed air process. Check out EXAIRS filter options here!

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Compressed Air Purity Classes & ISO 8573-1. What Does it Mean for You?

The compressed air coming directly from your air compressor will usually require further treatment & preparation before it can be used. It’ll contain particulate matter, moisture, and hydrocarbons that the intake filter won’t remove…remember, it’s there to protect the compressor itself against damage from larger particulate. Smaller particulate and other contaminants that can affect air operated products & tools will still need to be addressed, after compression. The degree to which this additional treatment is necessary is dictated by what you’re using your compressed air for.

ISO 8573-1:2010 – Compressed air – Part 1: Contaminants and Purity Classes quantifies the quality of the air according to three properties, into different classes:

Per the descriptions above, here are the criteria by which compressed air purity is classified in these three categories. Certain applications can call for different classes for these three categories (more on that in a minute).
  • Maximum particle size & concentration of solid contaminants. These can come from rust on the inside of the distribution piping, particulate generated by wear of air system components, and atmospheric contamination that the compressor’s intake filter doesn’t catch.
  • Maximum pressure dew point. No matter where your compressor is located, the air it pulls in contains some amount of water vapor. Dew point is the temperature at which it will condense at a given pressure. As long as the compressed air temperature is above that dew point, there won’t be any water (in liquid form) in it.
  • Maximum oil content. This most often is due to carryover from oil lubricated compressors, but can come from atmospheric oil (or other hydrocarbon) vapor drawn into the compressor’s intake.

So…what does this mean to you, relating to your use of compressed air? Well, it largely comes down to the nature of your application. Whatever is in your compressed air supply will be in contact with whatever the air comes in contact with. If a machinist is using a Safety Air Gun to blow chips & coolant from machined parts, they’re not going to be particularly concerned with this specification from a regulatory standpoint. If those parts are going straight from the machine shop to a paint booth, they’re certainly going to want to use air that’s free of particulate, moisture, and oil. All of those things will, quite noticeably, affect the quality of the painted finish. Filter Separators and Oil Removal Filters installed at the point of use will take care of that. A case could be made for a purity specification and regular testing of their compressed air, but this really just falls under the confines of good engineering practice.

Compressed air use in applications where it can come in contact with food or beverages intended for consumption (by people AND animals, according to the Federal Food, Drug, and Cosmetic Act) is considered a critical factor for cleanliness. They reference guidelines from the British Compressed Air Society (BCAS) to specify purity classes for both direct and indirect contact with food and beverage products:

Direct contact requires testing and compliance to Class 2:2:1 per the above table means:

  • Particulate Class 2 – particle concentration, by particle size, in concentrations no greater than:
    • 400,000 particles sized 0.1-0.5 microns, per cubic meter
    • 6,000 particles sized 0.5-1.0 microns, per cubic meter
    • 100 particles sizes 1.0-5.0 microns, per cubic meter
  • Maximum pressure dew point Class 2 – vapor pressure dew point must be less than 40°F (40°C) at the maximum pressure of the compressed air system.
  • Oil content Class 1 – concentration must be less that 0.001 milligrams per cubic meter

Examples of direct contact applicable to the use of EXAIR Engineered Compressed Air Products include blowing air for cooling, moisture removal, coating layer distribution, etc., of unpackaged food product.

EXAIR Stainless Steel Super Air Knives are popular in food processing applications (left to right): removing excess moisture prior to flash freezing of fish filets, preventing clumping while packaging shredded cheese, and (my personal favorite) ensuring a consistent and even glazing of fresh, delicious doughnuts.

Line Vac Air Operated Conveyors and Vortex Tubes are also used in direct contact applications in the food industry:

316SS Threaded Line Vac conveys bulk grain in a distillery (left). Vortex Tube rapidly sets melted chocolate in a mold (right).

Indirect contact is slightly (but JUST slightly) less restrictive: those are Class 2.4.2. Particulate and oil content classes remain the same, but dew point can be as high as 37°F (3°C). This is where the air the air is coming into contact not with the consumable product itself, but, for example, the packaging or container:

Atomizing Spray Nozzles rinse bottles prior to labeling (left), 1″ Flat Super Air Nozzle blows off label to ensure proper scanning by sensor (center), Line Vac conveys canned goods (right).

EXAIR Corporation is committed to helping you get the most out of our products – and your compressed air system. If you have questions, I can talk about compressed air all day – and oftentimes I do! Let’s talk.

Russ Bowman, CCASS

Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

ISO 8573-1 Chart by Compressed Air Best Practice.

The Importance of Compressed Air Filters

The last home I purchased had an all-seasons room, but the sellers told me the air conditioner that controlled the room temperature wasn’t working. When I moved in and tested the unit, the sellers were correct that it did not run. I started breaking it down and thought that maybe it could use a good cleaning. During this I found the filter, black and covered with pet fur. It was a washable filter so I cleaned it and let it air dry as I continued to clean remaining areas of the unit. When I put the filter back in and tried running the unit it was a miracle, it was running and producing cool air. I did nothing other than clean and clear the filter, no replacement parts, no tweaking and no repairmen.

I tell this story to many people now as it also relates to appliances, cars, lawn mowers and now I emphasize filters for compressed air systems. Using auto drain filters and oil removal filters is imperative to keeping your air clean before it gets to your tooling and equipment. Keeping water condensate and particulates contained to your filters is critical to the operation and life of your tooling and equipment. Older compressed air lines can begin to rust or corrode inside, creating scale which can jam and cause inefficiencies. Sediment and other contaminants will build up and could cause damage to your compressed air systems.

Good engineering practice calls for point of use filtration and moisture removal, such as that provided by EXAIR Filter Separators.

EXAIR carries multiple sizes and types of compressed air filters available from stock. Our Particulate and Coalescing filters can be found in our catalog and online (use the link above). If you have an application and need help selecting and sizing the right filter for your needs please contact one of our application engineers by calling 800.903.9247.

Eric Kuhnash
Application Engineer
E-mail: EricKuhnash@exair.com
Twitter: Twitter: @EXAIR_EK