Compressed Air Filters: What They Are, And Why They Matter

The first time I ever bought a brand new car was in 1995…it was a Ford Escort Wagon. My plan was to pay it off quick and run the tires off it. Well, I DID actually put new tires on it several times over the 11 years and 200,000 miles I had it. But, aside from fuel & tires, that car cost me less than $2,000 in repairs over all that time…an achievement that my mechanic said was due largely to the aforementioned planned maintenance, which largely consisted of regular oil changes, which, of course, included a new oil filter, every 3,000 miles. For the record, I didn’t run the wheels off it; I sold it when I took a job that included a company vehicle. Also for the record, I found out the fellow I sold my car to was still driving it after I left that job (and company vehicle.) He, too, believed in regular oil changes, and he might still have that 1995 Escort on the road for all I know.

So, yeah, I’m a big believer in the importance of fluid filtration.  If you’re a regular reader of the EXAIR Blog page, you likely are too.  The two main culprits that cause the most problems in a compressed air system are solid particulates and water.  These are easily addressed with a Filter Separator, like EXAIR Model 9004 Automatic Drain Filter Separator.  It has a 5 micron particulate element, and a centrifugal element that imparts a spinning motion to the air flow.  Since water is denser than air, any droplets of moisture are “flung” to the inside wall of the bowl, while the moisture-free air continues on through the discharge.

 

The particulate element captures solids larger than 5 microns, and the centrifugal element eliminates moisture.

Another common impurity in compressed air is oil.  Since oil-less compressors came along, this is easy to eliminate at the source…literally.  However, for other types of compressors (piston types in particular,) as they age, the oil that lubricates the moving parts can seep by the piston rings and get to the air side.  Oil doesn’t carry the same wear and corrosion problems that dirt & water do, but it causes particular problems in air conveyance and blow off applications: anything in your air is going to get on your product.  Ask any paint booth operator, for example, what happens when a metal surface hasn’t been cleaned of all traces of oil.  It really does look a “fish eye.”

The most common type of oil removal filter uses a coalescing element.  Oil entrained in pressurized gas flow isn’t as dense as water – so centrifugal elements won’t remove it – and it tends to act like particulate…but very fine particulate – so typical sintered particulate elements won’t remove it.  Coalescing elements, however, are made of a tight fiber mesh.  This not only catches any trace of oil in the air flow, but also much finer particulate than those sintered elements.  EXAIR Oil Removal Filters, like the Model 9027 shown below, provide additional particulate filtration to 0.03 microns.  That’s some pretty clean air.

The coalescing element of an Oil Removal Filter catches oil and very fine particulate.

For best results, we recommend both the Filter Separator and Oil Removal Filter.  Make sure you install the Filter Separator upstream of the Oil Removal Filter…that way, its 5 micron element catches all the “big” particles that would quickly clog the very fine coalescing element, necessitating an element replacement.  In fact, this arrangement will allow the Oil Removal Filter to operate darn near indefinitely, maintenance free.

If you have questions about keeping your compressed air clean, moisture free, and oil free, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

6 Basic Steps for Good Air Compressor Maintenance (And When to Do Them)

A production equipment mechanic with the 76th Maintenance Group, takes meter readings of the oil pressure and temperature, cooling water temperature and the output temperature on one of two 1,750 horsepower compressors. (Air Force photo by Ron Mullan)

In one of my previous jobs, I was responsible for the operation of the facility.  One of my biggest responsibilities was the air compressor because it supplied pressurized air though out the facility to feed the pneumatic systems.  Like with many industries, the compressor system is the life blood of the company.  If the compressor fails, the whole facility will stop.  In this blog, I will share some preventative maintenance items and schedules for your air compressors.

Because the cost to make compressed air is so expensive, compressed air systems are considered to be a fourth utility.  And with any important investment, you would like to keep it operating as long and efficiently as possible.  To do this, it is recommended to get your air compressor a “checkup” every so often.  I will cover some important items to check as well as a recommended schedule for checking.  Depending on the size of your air compressors, some items may or may not apply.

1. Intake filter:  The intake filter is used to clean the air that is being drawn into the air compressor.  Particles can damage the air pump mechanisms, so it is important to have the proper filtration level.  But, as the intake filter builds up with debris, the pressure drop will increase.  If they are not properly monitored and cleaned, the air flow will be restricted.  This can cause the motors to operate harder and hotter as well as reduce the efficiency of the air compressor.

2. Compressor Oil:  This would be for flooded screws and reciprocating compressors that use oil to operate the air pump.  Most systems will have an oil sight gauge to verify proper levels.  In larger systems, the oil can be checked for acidity which will tell you the level at which the oil is breaking down.  The oil, like in your car, has to be changed after so many hours of operation.  This is critical to keep the air pump running smoothly without service interruptions.

3. Belts and Couplings:  These items transmit the power from the motor to the air pump.  Check their alignment, condition, and tension (belts only) as specified by the manufacturer.  You should have spares on hand in case of any failures.

4. Air/Oil Separators:  This filter removes as much oil from the compressed air before it travels downstream.  It returns the oil back to the sump of the air compressor.  If the Air/Oil Separator builds too much pressure drop or gets damaged, excess oil will travel downstream.  Not only will the air pump lose the required oil level, but it will also affect the performance of downstream parts like your air dryer and after cooler.

5. Internal filters:  Some air compressors will come with an attached refrigerated air dryer.   With these types of air compressors, they will place coalescing filters to remove any residual oil.  These filters should be checked for pressure drop.  If the pressure drop gets too high, then it will rob your compressed air system of air pressure.  Some filters come with a pressure drop indicator which can help you to determine the life of the internal filter element.

6. Unloader valve:  When an air compressor unloads, this valve will help to remove any compressed air that is trapped in the cavity of the air pump.  So, when the air compressor restarts, it does not have to “work” against this “trapped” air pressure.  If they do not fully unload, the air compressor will have to work much harder to restart, wasting energy.

Preventative maintenance is very important, and checks need to be performed periodically.  As for a schedule, I created a rough sequence to verify, change, or clean certain items that are important to your air compressor.  You can also check with your local compressor representative for a more detailed maintenance schedule.

Daily:

  • After stopping, remove any condensate from the receiver tank.
  • Check oil level.

Monthly:

  • Inspect cooling fins on air pump. Clean if necessary
  • Inspect oil cooler. Clean if necessary

Quarterly:

  • Inspect the inlet air filter. Clean or replace if necessary.
  • Check the belt for tension and cracks. Tighten or replace.
  • Check differential pressure indicators on outlet compressed air filters.

Yearly:

  • Replace Air Inlet Filter
  • Replace the air-oil separator
  • Test safety valves and unloader valve
  • Replace compressed air filters
  • Change oil
  • Grease bearings if required

Keeping your air compressor running optimally is very important for pneumatic operations and energy savings.  I shared some important information above to assist.  Another area to check would be your pneumatic system downstream of the air compressor.  EXAIR manufactures engineered products that can reduce air consumption rates.  You can contact an Application Engineer to discuss further on how we can save you energy, money, and your air compressor.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb