Reversible Drum Vac Empties Sumps For Demolition Company

A demolition company was looking for a way to remove the liquid from sumps and tanks in the industrial buildings they were contracted to provide their service upon. The liquids in question were mainly coolant and oil that had been left behind when the machinery was removed…anything that could be re-used was already gone; this was the “bitter dregs,” as it were.  Since these buildings are about to be demolished, electricity is rarely available.

They had a pumping system that ran off a diesel engine that they COULD take with them, but they ALWAYS had a large mobile air compressor for the pneumatic tools used in other processes in the demolition of the building. Since they had steel drums in abundance, the Reversible Drum Vac Systems sounded very attractive to them, so they got a Model 6295 Deluxe High Lift Reversible Drum Vac System for 55 Gallon Drum to try out.

The High Lift Reversible Drum Vac System converts a drum and dolly into a mobile pumping system.

Now, instead of committing an additional truck (and driver) to getting the diesel engine driven pumping system to the site, they simply move the Reversible Drum Vac pump unit from 55 gallon drum to 55 gallon drum as they’re filled. Once the drums are returned to their facility, they switch the the Reversible Drum Vac to the “empty drum” configuration, and use it to pump the liquid out into their recycling tanks, where they await collection and processing by their waste handling service.  Even when they have to use a number of drums, the High Lift Reversible Drum Vac Systems still streamline the process over the use of the diesel engine pumping system.

If you’d like to find out more about our Industrial Vacuums, or any of our compressed air operated products, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Getting A Little More Vacuum and Flow

Last week, a customer called and indicated that he was a long time user of the model 6013 High Velocity Air Jet.

6013
Model 6013 High Velocity Air Jet

The customer was using the Air Jet to remove light trim scrap from a manufacturing process. The Air Jets utilize the Coanda effect (wall attachment of a high velocity fluid) to produce air motion in their surroundings.  A small amount of compressed air to the Air Jet is throttled through an internal ring nozzle at speeds above sonic velocity.  In the above image, this produces a vacuum at the left side, pulling in large volumes of surrounding air. By utilizing this vacuum pull and ducting the right side exhaust, air and scrap stream to a collection area. The customer assembled a small, efficient, and inexpensive scrap removal system.

The reason the customer had called in was there were some recent changes to the manufacturing process and needed a bit more vacuum force and flow to handle larger scrap and longer travel. We explored using a larger shim, but they were already using the largest size (0.015″.) We talked about the other products that EXAIR offers (Air Amplifiers, Line Vacs) that are used for scrap removal and conveyance.  But with any change, there are usually other modifications and approvals that must be dealt with in order to proceed. So we hit upon the Adjustable Air Jet, which is an adjustable version of the model 6013.

6019
Model 6019 Adjustable Air Jet

The model 6019 Adjustable Air Jet utilizes an adjustable air gap in place of the fixed shim thickness.  This allows for greater air flow, which results in greater vacuum and conveyance distances. As is the case for many customers, we gathered some additional data to help this customer make a decision. We set up each of the units and tested them at maximum capabilities, and the model 6019 was shown to deliver upwards of 50% greater flow.  The customer felt certain this level of performance would handle what the changed process would require, and best of all, no modifications to any part of the set-up would be required, simply install the 6019 where the 6013 was currently placed.

The High Velocity Air Jet is also part of the model 1909 Blowoff Kit, and is also used in the model 8193 Ion Air Gun and model 8194 Ion Air Jet, for Static Elimination applications. Of course, each can be purchased as an individual item.

To discuss your application and how an EXAIR Intelligent Compressed Air Product can make your process better, feel free to contact EXAIR and myself or one of our other Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB

 

Three Ways Your Company is Wasting Money on Compressed Air

Compressed air is an expensive utility for most industrial applications.  The cost of generating a 1,000 Standard Cubic Feet is $0.25.  A typical 25 HP screw compressor will generate 52.5 million cubic feet per year. To generate 52.5 million cubic feet will cost $13,140 in electricity costs. Running this compressor more than necessary will lead to higher maintenance costs and higher electricity costs. Also, decreasing your compressor load will delay or avoid a capital expenditure, as your plant expands and production grows.  Anything you can do today to limit wasted compressed air will pay for years to come.  Here are 3 ways you are currently wasting compressed air.

ONE> Open Ended Blow Offs – The benefits of eliminating open ended blow offs in your plant are numerous and drastic. Saving air by outfitting open ended blow offs with an engineered solution (EXAIR air nozzle, air knife, air amplifier) is a significant portion of compressed air conservation. It is an easy install and can save a great deal of compressed air.  The situation always starts innocent enough: Five years ago Company X installed a new production line, but found that they needed a compressed air blow off to move, clean, dry or cool a part.  The blow off may not have been planned in the original specification, or the engineering company that specified the line did not take into account the compressed air cost of the line. The maintenance department is under pressure from the management to get the line running, and an open pipe works to get the line running. Since the compressed air already existed in the plant, it is free, cheap, or easy … for them. But what will it cost your company?

A Super Air Nozzle will use 14 standard cubic feet per minute (SCFM) at 80 PSIG of inlet pressure. A 1/4″ inside diameter 18″ long tube will use 50.5 SCFM. Now the compressor system in your facility is working harder by 36.5 SCFM.  This means your next compressor will be 10 HP larger than it needs to be to keep up with excessive demand. In addition, 36.5 SCFM running 24 hours a day is 52,560 Standard Cubic Feet, which costs $13.14 to generate.  Over a year that is $3,285, because the knowledge and time to install an engineered compressed air nozzle does not always present itself. Just imagine the cost, if you have 5 open blow offs, or 50?

Open blow offs can also violate OSHA requirements for using compressed air for cleaning, when pressurized above 30 PSIG. Not to mention they generally are louder than 90 dBA, which is the maximum allowable noise exposure without hearing protection under OSHA standard 29 CFR – 1910.95 (a). A nozzle is a simple way to avoid a OSHA fine. If the money didn’t convince you to use an engineered nozzle, the cost to your employees health and hearing should.

TWO> Leaky Distribution System – Second, we come to the most simplistic way of wasting compressed air: Leaky pipes. It seems impossible that the small air leaks that occur in almost any compressed air system would amount to a large cost that would be significant in any way, but as we discuss here. It can happen to the best of us. It is estimated that over 30% of compressed air generated is lost to leaks in a compressed air system, before it is used at its intended point.  Do not let this happen in your facility.  Have an auditor come into your facility to check your system, or conduct your own air leak survey using our Ultrasonic Leak Detector.

THREE> Leaving Compressed Air on All the Time – Lets say that your part only crosses in front of the blow off every 15 seconds, and the part takes 5 seconds to cross in front of the that blow off.  That means that there are ten seconds in every cycle where compressed air is wasted. Let’s continue our example of the 1/4″ inner diameter copper tube that is 18″ long above.  How much are those 10 seconds costing you? 10 seconds times 4 cycles per minute is 40 seconds of wasted air every minute. In 40 seconds 24.3 SCFM air is wasted. 24.3 SCFM of wasted air will cost $2,187 per year with a 24 hour work day and 250 working days in a year.

Even after lowering your total consumption by installing an engineered air nozzle on your open blow off, there is more opportunity to reduce compressed air. If you have Super Air Nozzle already installed and have realized some very good air savings, you can still turn off your compressed air flow for 10 seconds every cycle in our example. In the case of the Super Air Nozzle that will be 9.33 SCFM, which will still cost $837 per year. If you are looking for an easy way to turn your air on and off only as needed during your process, the EXAIR Electronic Flow Control is a great system to further fine tune your compressed air use. To do your own calculation, EXAIR’s Air Savings calculator is a great tool for calculating the cost of compressed air.

Most of these items require some type of expenditure to complete, but paying for a nozzle, an air survey or a control system will lower your compressor load everyday you work. EXAIR’s Application Engineers are available everyday to access your compressed air systems. We would be happy to help you determine the ROI for any compressed air system upgrade. You can read about our success stories on our website at Case Studies (we do ask you to register before viewing our case study successes).

Dave Woerner
Application Engineer
Davewoerner@EXAIR.com
@EXAIR_DW

Line Vac for Matrix Removal from Labelling Application

We have been able to specify Line Vacs for a variety of interesting applications that generally tend to be classified as “hopper loading” types of applications. But sometimes, we also get to see them used for other tasks for which they are perfectly matched in their ability. One is for movement of yarn/string as shown in this video originally mentioned in Brian Farno’s blog “Yet Another Way to Help You, Customer”.

Matrix Removal 1Matrix Removal

Another great application is in the labeling process (1. Line Vac; 2. Conveying hose; 3. Compressed air supply and on/off valve). After the labels have been applied to their respective product, there is a waste stream that is referred to as “the matrix”. No, I’m not talking about the movie, but rather the release liner that labels are affixed to in bulk format prior to being used. The normal method for taking up this waste stream was to use a winder. However, after some amount of time, the winder inevitably becomes filled with the matrix and must be emptied. The Line Vac presents a unique advantage in that it can pull the matrix from the machine and simply blow it out to a waste receptacle. The above photos are the most recent incarnation of this system. Below is an older system that has a little different twist.

Matrix Removal 2Matrix Removal 3

If you have a labeling system giving you trouble due to the winding process getting fouled, give the Line Vac products a try. We have models from 3/8” hose size up to 4” hose size which can accommodate various sizes of product moving through.

Neal Raker, Application Engineer
nealraker@exair.com