Watch EXAIR Webinars On-Demand

That’s right, just like your local cable or satellite TV provider, EXAIR offers On-Demand content that can be streamed and used for training, education, help with cost justification, or improve awareness around compressed air costs and safety.

The best part about this content is that you don’t have to pay for it, simply register on our website (where your information is not shared) and go to the Webinars section of our Knowledge Base.  Then gain access to the library of five webinars that have all been broadcast around compressed air safety, efficiency, and optimization.

EXAIR.com – Webinars On-Deman

The current On-Demand offering is listed below:

Intelligent Compressed Air Solutions for OSHA Compliance
Intelligent Solutions for Electrical Enclosure Cooling
Optimize Your Compressed Air System in 6 Simple Steps
Simple Steps for Big Savings
Understanding Static Electricity

The most recent webinar we created is currently only On-Demand for registered attendees and will soon be added to the Knowledge Base library.  If you did not get to see it live, the content was extremely helpful for anyone that works within a facility that uses compressed air.  Use This Not That – 4 Common Ways To Save Compressed Air In Your Plant, keep an eye out for the release date in our On-Demand section.

If you would like to discuss any of the webinar topics further, please feel free to reach out to an Application Engineer.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Webinar by EXAIR: Use This, Not That – Four Common Ways to Save Compressed Air in Your Plant

UThisThat_LIVEOD_600x150

Not much in life is free anymore. So, make sure and take advantage of EXAIR’s upcoming FREE webinar at 2:00 PM ET on 10/17/2019. Not only are we providing it for free, but in this webinar we’ll be discussing how you can save money by reducing your compressed air consumption. Something for free, that will help save you money? Almost unheard of these days!!! Hosted by one of our highly-trained Application Engineers, Jordan Shouse, you’ll learn about four common ways that you can easily save air in your facility.

Compressed air is often referred to as the fourth utility in industry. When used improperly, compressed air is extremely expensive. Homemade devices such as open-ended and drilled pipes, inefficient air nozzles, leaks, etc. all contribute to increased energy costs. In addition to being wasteful, these devices are not safe and compliant with OSHA standards and regulations. By using an Intelligent Compressed Air Product, you’ll be both saving money and creating a safer environment for your operators.

In this webinar, you’ll gain an understanding of the places in your facility that are wasting the most compressed air. We’ll educate you on the various engineered solutions available from EXAIR to help eliminate unnecessary compressed air usage. You’ll gain the knowledge necessary to determine the best solution based on the application, sound level, compressed air usage, and compliance with OSHA safety requirements. You’ll also learn about the various solutions available to help understand and optimize your compressed air system. You can’t begin implementing a plan to reduce air consumption until you fully understand the usage in your own facility and processes. EXAIR’s line of Optimization products are ideal to help you gain a baseline measurement and begin implementing new products and processes that’ll only help add to your bottom line.

UThisThat_OD_552x368

After the conclusion of the webinar will be a brief Q&A session where you can ask any questions you have about any of the topics covered. Unable to attend the webinar live? Don’t let that stop you from registering! Afterwards, each registrant will receive a link via e-mail where they’ll be able to access the full webinar at any time. Make sure and take advantage of this opportunity to gain some knowledge about the usage of your compressed air. You’ll be glad you did!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Pressure – The Inner Working of the Basic Pressure Gauge

Everyday here at EXAIR we talk about pressure, specifically compressed air pressure. The other day I was looking up our model 9011, 1/4″ NPT Pressure Gauge , and it got me to wondering just how does this small piece of industrial equipment work. The best way to find out is to tear it apart.

9011_exair

Most mechanical gauges utilize a Bourdon-tube. The Bourdon-tube was invented in 1849 by a French watchmaker, Eugéne Bourdon.  The movable end of the Bourdon-tube is connected via a pivot pin/link to the lever.  The lever is an extension of the sector gear, and movement of the lever results in rotation of the sector gear. The sector gear meshes with a spur gear (not visible) on the indicator needle axle which passes through the gauge face and holds the indicator needle.  Lastly, there is a small hair spring in place to put tension on the gear system to eliminate gear lash and hysteresis.

When the pressure inside the Bourdon-tube increases, the Bourdon-tube will straighten. The amount of straightening that occurs is proportional to the pressure inside the tube. As the tube straightens, the movement engages the link, lever and gear system that results in the indicator needle sweeping across the gauge.

Pressure Gauge Top

The video below shows the application of air pressure to the Bourdon-tube and how it straightens, resulting in movement of the link/lever system, and rotation of the sector gear –  resulting in the needle movement.

If you need a pressure gauge or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Six Steps To Optimizing Your Compressed Air System – Step 1: Measure

“To measure is to know – if you cannot measure it, you cannot improve it.”
-Lord Kelvin, mathematical physicist, engineer,and pioneer in the field of thermodynamics.

This is true of most anything. If you want to lose weight, you’re going to need a good scale. If you want to improve your time in the 100 yard dash, you’re going to need a good stopwatch. And if you want to decrease compressed air consumption, you’ll need a good flowmeter. In fact, this is the first of six steps that we can use to help you optimize your compressed air system.

Six Steps To Optimizing Your Compressed Air System

There are various methods of measuring fluid flow, but the most popular for compressed air is thermal mass air flow.  This has the distinct advantage of accurate and instantaneous measurement of MASS flow rate…which is important, because measuring VOLUMETRIC flow rate would need to be corrected for pressure in order to determine the true compressed air consumption.  My colleague John Ball explains this in detail in a most excellent blog on Actual (volume) Vs. Standard (mass) Flows.

So, now we know how to measure the mass flow rate.  Now, what do we do with it?  Well, as in the weight loss and sprint time improvements mentioned earlier, you have to know what kind of shape you’re in right now to know how far you are from where you want to be.  Stepping on a scale, timing your run, or measuring your plant’s air flow right now is your “before” data, which represents Step One.  The next Five Steps are how you get to where you want to be (for compressed air optimization, that is – there may be a different amount of steps towards your fitness/athletic goals.)  So, compressed air-wise, EXAIR offers the following solutions for Step One:

Digital Flowmeter with wireless capability.  This is our latest offering, and it doesn’t get any simpler than this.  Imagine having a flowmeter installed in your compressed air system, and having its readings continually supplied to your computer.  You can record, analyze, manipulate, and share the data with ease.

Monitor your compressed air flow wirelessly over a ZigBee mesh network.

Digital Flowmeter with USB Data Logger.  We’ve been offering these, with great success, for almost seven years now.  The Data Logger plugs into the Digital Flowmeter and, depending on how you set it up, records the flow rate from once a second (for about nine hours of data) up to once every 12 hours (for over two years worth.)  Pull it from your Digital Flowmeter whenever you want to download the data to your computer, where you can view & save it in the software we supply, or export it directly into Microsoft Excel.

From the Digital Flowmeter, to your computer, to your screen, the USB Data Logger shows how much air you’re using…and when you’re using it!

Summing Remote Display.  This connects directly to the Digital Flowmeter and can be installed up to 50 feet away.  At the push of a button, you can change the reading from actual current air consumption to usage for the last 24 hours, or total cumulative usage.  It’s powered directly from the Digital Flowmeter, so you don’t even need an electrical outlet nearby.

Monitor compressed air consumption from a convenient location, as well as last 24 hours usage and cumulative usage.

Digital Flowmeter.  As a stand-alone product, it’ll show you actual current air consumption, and the display can also be manipulated to show daily or cumulative usage. It has milliamp & pulse outputs, as well as a Serial Communication option, if you can work with any of those to get your data where you want it.

With any of the above options, or stand-alone, EXAIR’s Digital Flowmeter is your best option for Step One to optimize your compressed air system.

Stay tuned for more information on the other five steps.  If you just can’t wait, though, you can always give me a call.  I can talk about compressed air efficiency all day long, and sometimes, I do!

 

What Exactly Does “Easy To Do Business With” Mean?

That’s the goal – we want it to be easy for you to do business with EXAIR. I understand this is not exactly a quantitative expression, and everyone here likes to have data to back up our claims.  Well, here are just a few ways that I have found to verify we are easy to deal with.

Whenever you call in, the phone is answered by a live person.  This of course is true for Monday through Friday from 8 AM to 5 PM EST – what most of us consider “normal business hours”. The team that answers the phone is also our Order Entry team who can help with pricing, some general product questions, lead times, freight quotes, etc. And, if you need additional technical information or an expert to assist you with implementing a solution for your problem, they are the team who will pass your calls on to my team, the Application Engineers.

We have a full staff of Application Engineers who are here to assist with selecting the right product to fit your needs and troubleshooting existing compressed air setups. Our Application engineers are experts at determining how much compressed air can be saved compared to an existing setup and how that translates into your dollar savings. They understand how important it is to you to keep your processes OSHA compliant and personnel safe. Our Application Engineers also walk you through any returns which may occur with our 30 day trail period, which brings us to the next topic.

We honor a 30 day guarantee on stock products.  This permits you to get the product in to your facility and put it through the paces and if it doesn’t perform to your standards, give us a call.  We will take the item back and issue you a full credit for the purchase price of the product. I should probably state at this point that – Yes, we do deal with applications we have not dealt with before. In these situations we remain confident in our recommended solution (or we would not have made it) but will remain close to you as the installation and implementation occur just so we can help troubleshoot if necessary. If it ends up not working – see the first 3 sentences.

On top of all those, we stand behind our product with a 5 year built to last warranty for compressed air products, and a 1 year warranty on electronic components.   This just goes to show how strongly we believe in our workmanship and our products.

30 Day Guarantee
30 Day Guarantee

In case you have never called or sent in an inquiry from one of the numerous ways we offer to contact us,  please do.  I can assure you that you will receive a timely response from a live person that will give you the best answer possible.   If we don’t have the answer, we’ll tell you and many times we will offer a good place to find a solution.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

A Tale Of Two Engineering Projects

At our Boy Scout Troop meeting last night, we had adult volunteers in two rooms, putting their “day job” skills to use. Two of our troop parents are dental professionals, so they were working with the Scouts, as a group, to complete the requirements for their Dentistry Merit Badge. In the other room, a couple of other parents and I were making last-minute equipment preparations for the Troop’s annual Lenten Fish Fry.

Anyway, one of our projects this year is to fix or replace the fryer tank. Nobody knows how old it is or where it came from…one of our Assistant Scoutmasters has been around for almost 20 years, and it was here when he came. Now, it’s just a big metal box that sits on the stove and holds the oil that we fry the fish in, but with three engineers looking it over and coming up with ideas, it’s got the potential to be the most complex big metal box in the county. The current problem is only a ¼” crack near the top of a corner, but also on our “wish list” are items like:

*Handles: this tank is about 4 feet long, 3 feet wide, and 18 inches deep. It’s not heavy at all, but handles sure would make it easier to move around, wash, dry, etc.
*Drain: Currently, we use a small battery operated pump to empty about 10 gallons of oil out of it every Friday night. A strategically placed petcock valve will cut our clean up time to a fraction of what it currently is.
*Temperature control: these ideas ranged from a port for a permanently mounted thermometer to a thermocouple that we could tie in to a regulator in the gas line. We’re all scared of tapping into the gas line, so the thermometer is looking better and better. It’s always fun to see yourself on the news, but not when it’s because you were involved with a fire that burned a church building down.
*Material of construction: Stainless Steel is awesome, but we’re probably on more of an aluminum budget.

Last week, we had the pleasure of conducting an Efficiency Lab Test of a customer’s drilled pipe compressed air blowing device. It was doing the job, but it used a lot of air, it was loud, and it had been in place for as long as anyone could remember. As it turns out, our 12″ Aluminum Super Air Knife looks to be a viable solution to the items on their “wish list”: reduced air consumption, and lower noise levels…it’s going to cut both to a fraction of what they are currently. This is a significant improvement, because not only are they going to save $500-$1,000 per year on compressed air for each of two units, but the operators no longer have to wear hearing protection, since the maximum sound levels are going from 108 to 67 decibels…well below OSHA’s published 8-hour limit of 90 dBA.

These are two examples of what can happen when you get a couple of engineers involved in a project. If you’d like to find out how much you can save your wallet…and ears…by switching to EXAIR’s Intelligent Compressed Air Products, give me a call. If you find yourself hungry and on the east side of Cincinnati on a Friday night in the coming weeks, I can also tell you where to get a great meal in support of a great organization.

Russ Bowman
Application Engineer
russbowman@EXAIR.com
Twitter: twitter.com/exair_rb
Facebook: http://www.facebook.com/exair

Traffic And Fluid Dynamics

Traffic

Earlier this morning I heard that a high speed chase that started in Michigan ended near Cincinnati, Ohio. My first thought was that, due to traffic, the chase became a jam.  Depending on the time of day, it’s IMPOSSIBLE to go anywhere, no matter how much you want it to happen (a circumstance many of us experience).

Similarly, when there is inadequate sizing of a compressed air line, no amount of desire is going to deliver the air where it needs to be.  Imagine every air molecule in the pipe is a car on the road.  When demand spikes and all those air molecules need to go to the same place, they have to have sufficient space to do so, just like vehicles on the road need enough lanes to prevent backup.  When the demand for compressed air reaches the maximum flow rate of the pipe, this is called saturation.  When the demand for compressed air exceeds this saturation point, end use items such as air nozzles or air tools are going to be starved for air.  The air might get there, but it will be late, and the earlier air molecules will be long spent, leading to underperformance of the item.

Unfortunately for those of us who fight traffic daily, fluid flow mechanics don’t apply to traffic flow.  But, fortunately for those of us who use compressed air as a utility, compressed air IS bound by fluid mechanics.  So, if we can quantify the compressed air demand in a system, we can design the system with enough capacity and volume capability to perform as needed.

EXAIR Application Engineers are well versed in helping our customers determine line sizes and providing support for our products on their systems.  If you need help with an EXAIR product and how it integrates into your compressed air system, contact an Application Engineer.

If only we could call city engineers to help with traffic…

Lee Evans
Application Engineer
LeeEvans@EXAIR
@EXAIR_LE