Refrigerated Air Dryers

Whenever air gets compressed, it reduces the space for the water molecules to remain as a vapor; which causes condensation.  For this, compressed air dryers are an important part of a compressed air system.  They are designed to remove moisture to prevent condensation further downstream in the system.  The three main types of dryers are refrigerated, desiccant, and membrane. For this blog, I will cover the refrigerant-type compressed air dryers.

Compressed air dryers are rated with a dew point rating.  A dew point is the temperature at which the air has a relative humidity of 100%.  Since the air cannot become more saturated with water than 100%RH, water will condense and fall out like “rain”.  You can see this effect during the cool mornings when dew forms on the grass.  Compressed air dryers are designed to reduce the dew point temperature of your compressed air.  For a refrigerant type, they are near the dew point temperature of 38oF (3oC).  Like a refrigerator, they use refrigerant to cool the compressed air.  We cannot go below this temperature as it could form ice inside the dryer.  But, as long as the ambient temperature does not go below 38oF (3oC), liquid water will not be present in the pneumatic system. 

There are two main types of refrigerated air dryers; cycling and non-cycling.  Cycling type refrigerant air dryers will cool a liquid mass, generally a glycol-water mixture, to a set-point and turn off.  The liquid will go through an air-to-liquid heat exchanger to remove the heat from the compressed air.  Referring to the cycling action, when the liquid mass goes above the set point, the refrigeration system will restart and cool the liquid mass again.  The cycling refrigerant air dryers are more expensive, but they are more efficient. 

Non-cycling refrigerant air dryers are more common.  The refrigeration system continues to run through an air-to-air heat exchanger to cool the compressed air.  It is similar to your AC system in your car.  With this type of system, they are more susceptible to the environment, i.e., temperature, elevation, and humidity.  So, adjustments are required for proper installation. 

With both types of refrigerant dryers, the internal compressed air section is very similar.  They will have a filter separator to remove the liquid that is created from the condensation from the cold temperatures.  They also have an additional air-to-air heat exchanger.  This will provide two important features for the refrigerated air dryers.  As the cold air leaves the refrigerant section, it helps to cool the incoming compressed air.  This will make the system more efficient.  And as the hot incoming compressed air helps to warm the cold air leaving the dryer, it will stop the condensation of liquid water on the outside of the pipes.  Like the dew forming on the grass during cool mornings, the same will occur with the compressed air piping system. 

Moisture-laden compressed air can cause issues such as increased wear on the pneumatic tools, the formation of rust in piping and equipment, quality defects in painting processes, and frozen pipes in colder climates.  Regardless of what products you’re using at the point-of-use, a compressed air dryer is undoubtedly a critical component of the compressed air system.  Delivering clean, dry air to your EXAIR Products or other pneumatic devices will help to ensure a long life out of your equipment.  If you wish to discuss more about your compressed air system or how EXAIR can provide a more efficient way to use that compressed air, an Application Engineer will be happy to assist you. 

John Ball, CCASS


Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Photo: Grass morning dew by RuslanSikunovPixabay License

Intelligent Compressed Air: What You Need To Know About Deliquescent Dryers

Moisture free air is a “must” for industrial use, for a number of reasons:

  • An awful lot of distribution systems incorporate iron pipe. It’s inexpensive, readily available, easy to work with, rated for pressure, and has a long history of successful installations. Iron pipe will also oxidize (make rust) in the presence of water:
Here’s what we find a lot of the time inside a Reversible Drum Vac that’s been sent in for refurbishment because it’s not drawing effective vacuum anymore.
  • Regardless of what your distribution lines and components are made of, water droplets can erode them. Compressed air itself is a gas; it follows the curves in elbows, and flows around valve discs & regulator diaphragms. Water droplets, on the other hand, run full speed INTO those things, often at high velocity. This eventually causes pitting, which is bad enough…those pits, though, are little pockets for salts, acids, or alkalines to effect their destructive little chemical reactions.
  • When used for blow off applications, anything in your compressed air will get on anything you’re blowing off. If the intent is to remove moisture from a surface, moisture in your compressed air supply decidedly works against your goal.
  • Water can freeze as it is carried along with air flow through orifices. This can quickly block the flow of air. The US Navy lost a submarine, USS Thresher (SSN-593) and all hands in 1963. A number of factors contributed to the sinking, but a significant one was that compressed air being blown into the ballast tanks (to create negative buoyancy) had higher than permissible moisture content, and froze in orifice plates in the lines. The ballast tanks stayed full of water, and 129 sailors & shipyard personnel died as the boat passed crush depth.

There are a number of types of air dryers that are commonly fitted to industrial air compressors to take care of moisture problems. The least expensive one of these is the Single Tower Deliquescent Dryer. Here’s how they work:

Deliquescent dryer: how it works (1)
  • Incoming compressed air enters near the base, where a form of mechanical separation occurs…the air flows back & forth, around trays of desiccant.  The simple act of changing direction causes some of the water to just fall out and collect in the bottom.
  • The air then flows upwards through the desiccant bed. The desiccant in a deliquescent dryer absorbs moisture (as opposed to the adsorption that occurs in a regenerative desiccant dryer) until they get so wet, they dissolve.
  • After the desiccant does its job, moisture free air flows out the top, and gets on with it’s work.

In addition to the low price tag, other things to like about them are:

  • Low pressure drop.
  • No moving parts or electrical components.
  • Can be used outdoors, and in hazardous, mobile, dirty, or corrosive environments.

Of course, there are things to NOT like about them as well:

  • Limited suppression of dew point – because they are drying the air to a specific relative humidity, as opposed to a specific dew point, the attainable dew point is dependent on the incoming air temperature, the chemical composition of the desiccant salt, and the ambient temperature where it’s installed. Unless you use some sort of specialty salt desiccant, the typical dew point is only 20-25ºF lower than the air inlet temperature.
  • Desiccant carryover – speaking of those specialty salts, they’re even more corrosive than the basic sodium chloride that’s often used. Any carryover will wreak havoc on your distribution system and air operated devices.

Deliquescent dryers’ particular set of “pros and cons” presents challenges for their use in industrial settings, for sure. But if the primary concern is preventing pipes from freezing up, then their low cost, low maintenance, and simplicity make them a great choice.

At EXAIR Corporation, we’re keen on compressed air efficiency. The attention to detail we pay to our products – from design, to manufacturing & assembly, to availability, and right on through to technical support – bears out our commitment to helping you get the most out of your compressed air system. If you’ve got questions, we can talk about this all day long…and most of the time, we do. Give me a call.

Russ Bowman, CCASS

Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Image courtesy of Brian S. Elliott, Wikimedia Commons Creative Commons Attribution-Share Alike 4.0 International License

Supply Side Review: Deliquescent Type Dryers

As mentioned in my post last week.  The supply side of compressed air systems within a facility is critical to production.  The quality of air produced by your compressor and sent to the demand side of the system needs to be filtered for both moisture and particulate.  One method to dry the air, that is the topic for this blog, is deliquescent type dryers.

These dryers operate like an adsorbent dryer such as a desiccant medium dryer.  The main variance is that the drying medium (desiccant) actually undergoes a phase change from solids to liquids.  Because of this the material is used up and cannot be returned to its original state for reuse.   The liquids formed by the desiccant dissolving in the removed water vapor are then filtered out of the air stream before it is passed on to the demand side of the air system.

There are many compounds that are used to absorb the moisture in the wet compressed air.  A few options are potassium, calcium, or sodium salts and many that contain a urea base.  The desiccant compound must be maintained at a minimum level for the dryer to contain enough media to successfully dry the air.

These dryers are generally a single tank system that is fed with compressed air from a side port near the bottom of the tank.  The air then travels up past drip trays where the desiccant and water mixture fall and ultimately ends up in the bottom of the tank.  The air then goes through a material bed that must be kept at a given level in order to correctly absorb the moisture in the air.  The dry air is then pushed out the top of the tank.

As the desiccant material absorbs the liquid from the compressed air flowing through the tank it falls onto the drip trays and then into the bottom of the tank where it is drained out of the system.  This process can be seen in the image below.

 

Deliquescent type compressed air drying system
How a deliquescent air dryer works – 1(VMAC Air Innovated, 2017)

 

The dew point that this style dryer is able to achieve is dependent on several variables:

  • Compressed air temperature
  • Compressed air pressure / velocity
  • Size and configuration of the tank
  • Compression of the absorption media
  • Type of absorption media and age of media

These dryers are simplistic in their design because there are no moving parts as well as easy to install and carry a low startup cost.

Some disadvantages include:

  • Dewpoint range 20°F – 30°F (Again this is according to the media used.)
  • Dissolved absorption material can pose a disposal issue as it may not be able to be simply put down a drain
  • Replacement of the absorption material

Even with disadvantages the ability to supply the demand side of a compressed air system for a production facility is key to maintaining successful operations.  If you would like to discuss any type of compressed air dryer, please contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

1 – Deliquescent Dryer Image: VMAC Air Innovated: The Deliquescent Dryer – https://www.vmacair.com/blog/the-deliquescent-dryer/

 

Refrigerant Compressed Air Dryer Systems

No matter what your use of compressed air entails, moisture is very likely an issue.  Air compressors pressurize air that they pull in straight from the environment and most of the time, there’s at least a little humidity involved.  Now, if you have an industrial air compressor, it’s also very likely that it was supplied with a dryer, for this very reason.

There are different types of dryer systems, depending on your requirements.

For practical purposes, “dryness” of compressed air is really its dew point.  That’s the temperature at which water vapor in the air will condense into liquid water…which is when it becomes the aforementioned issue in your compressed air applications.  This can cause rust in air cylinders, motors, tools, etc.  It can be detrimental to blow offs – anything in your compressed air flow is going to get on the surface of whatever you’re blowing onto.  It can lead to freezing in Vortex Tube applications when a low enough cold air temperature is produced.

Some very stringent applications (food & pharma folks, I’m looking at you) call for VERY low dew points…ISO 8673.1 (food and pharma folks, you know what I’m talking about) calls for a dew point of -40°F (-40°C) as well as very fine particulate filtration specs.  As a consumer who likes high levels of sanitary practice for the foods and medicines I put in my body, I’m EXTREMELY appreciative of this.  The dryer systems that are capable of low dew points like this operate as physical filtration (membrane types) or effect a chemical reaction to absorb or adsorb water (desiccant or deliquescent types.)  These are all on the higher ends of purchase price, operating costs, and maintenance levels.

For many industrial and commercial applications, though, you really just need a dew point that’s below the lowest expected ambient temperature in which you’ll be operating your compressed air products & devices.  Refrigerant type air dryers are ideal for this.  They tend to be on the less expensive side for purchase, operating, and maintenance costs.  They typically produce air with a dew point of 35-40°F (~2-5°C) but if that’s all you need, they let you avoid the expense of the ones that produce those much lower dew points.  Here’s how they work:

  • Red-to-orange arrows: hot air straight from the compressor gets cooled by some really cold air (more on that in a moment.)
  • Orange-to-blue arrows: the air is now cooled further by refrigerant…this causes a good amount of the water vapor in it to condense, where it leaves the system through the trap & drain (black arrow.)
  • Blue-to-purple arrows: Remember when the hot air straight from the compressor got cooled by really cold air? This is it. Now it flows into the compressed air header, with a sufficiently low dew point, for use in the plant.

Non-cycling refrigerant dryers are good for systems that operate with a continuous air demand.  They have minimal dew point swings, but, because they run all the time, they’re not always ideal when your compressed air is not in continuous use.  For those situations, cycling refrigerant dryers will conserve energy…also called mass thermal dryers, they use the refrigerant to cool a solution (usually glycol) to cool the incoming air.  Once the glycol reaches a certain temperature, the system turns on and runs until the solution (thermal mass) is cooled, then it turns off.  Because of this, a cycling system’s operating time (and cost) closely follows the compressor’s load – so if your compressor runs 70% of the time, a cycling dryer will cost 30% less to operate than a non-cycling one.

EXAIR Corporation wants you to get the most out of your compressed air system.  If you have questions, I’d love to hear from you.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook