Supply Side Review: Deliquescent Type Dryers

As mentioned in my post last week.  The supply side of compressed air systems within a facility is critical to production.  The quality of air produced by your compressor and sent to the demand side of the system needs to be filtered for both moisture and particulate.  One method to dry the air, that is the topic for this blog, is deliquescent type dryers.

These dryers operate like an adsorbent dryer such as a desiccant medium dryer.  The main variance is that the drying medium (desiccant) actually undergoes a phase change from solids to liquids.  Because of this the material is used up and cannot be returned to its original state for reuse.   The liquids formed by the desiccant dissolving in the removed water vapor are then filtered out of the air stream before it is passed on to the demand side of the air system.

There are many compounds that are used to absorb the moisture in the wet compressed air.  A few options are potassium, calcium, or sodium salts and many that contain a urea base.  The desiccant compound must be maintained at a minimum level for the dryer to contain enough media to successfully dry the air.

These dryers are generally a single tank system that is fed with compressed air from a side port near the bottom of the tank.  The air then travels up past drip trays where the desiccant and water mixture fall and ultimately ends up in the bottom of the tank.  The air then goes through a material bed that must be kept at a given level in order to correctly absorb the moisture in the air.  The dry air is then pushed out the top of the tank.

As the desiccant material absorbs the liquid from the compressed air flowing through the tank it falls onto the drip trays and then into the bottom of the tank where it is drained out of the system.  This process can be seen in the image below.

 

Deliquescent type compressed air drying system
How a deliquescent air dryer works – 1(VMAC Air Innovated, 2017)

 

The dew point that this style dryer is able to achieve is dependent on several variables:

  • Compressed air temperature
  • Compressed air pressure / velocity
  • Size and configuration of the tank
  • Compression of the absorption media
  • Type of absorption media and age of media

These dryers are simplistic in their design because there are no moving parts as well as easy to install and carry a low startup cost.

Some disadvantages include:

  • Dewpoint range 20°F – 30°F (Again this is according to the media used.)
  • Dissolved absorption material can pose a disposal issue as it may not be able to be simply put down a drain
  • Replacement of the absorption material

Even with disadvantages the ability to supply the demand side of a compressed air system for a production facility is key to maintaining successful operations.  If you would like to discuss any type of compressed air dryer, please contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

1 – Deliquescent Dryer Image: VMAC Air Innovated: The Deliquescent Dryer – https://www.vmacair.com/blog/the-deliquescent-dryer/

 

Intelligent Compressed Air: Deliquescent Dryers – What are They and How do They Work?

EXAIR has written blogs about the different types of dryers that are used to remove liquid from compressed air systems. In this blog, I will be discussing the deliquescent dryer. This dryer falls under the desiccant dryer category, and unlike the regenerative cousins, it is the least commonly used type of dryer. The regenerative desiccant dryers use a medium that will adsorb the water vapor, and the deliquescent dryers use a hygroscopic material that will absorb the water vapor. This salt-like medium has a strong affinity for water, and it comes in a tablet or briquette form. Placed inside a single unit pressure vessel, the “wet” compressed air passes through the bed to become dry. The size of the pressure vessel is determined by the compressed air usage which allows for the proper amount of contact time with the hygroscopic bed. Generally, the dew point will be between 20 to 50 deg. F (11 – 28 deg. C) less than the compressed air inlet temperature. Unlike most dryers, the dew point after deliquescent dryers will vary with the inlet air temperatures.

Vessel Design

The design of vessel is very important for the function of a deliquescent dryer. A grate is required to hold the medium off the bottom. The compressed air will flow from the bottom, up through the bed, and out from the top. The predetermined space between the bed and the bottom of the vessel is used for the liquid that is generated. When “wet” compressed air passes through the bed, the hygroscopic material will absorb the water and change the tablets from a solid into a liquid. Deliquescent dryers got the name from the definition of the verb, “deliquesce” which is “becomes liquid by absorbing moisture from the air”. Once the material is turned into a liquid, it cannot be regenerated. The liquid must be discarded periodically from the vessel and new solid material must be added. With the single tower design, the deliquescent dryers are relatively inexpensive.

Some advantages in using the deliquescent dryers are that they do not require any electricity or have any moving parts. So, they can be used in remote locations, rugged areas, or hazardous locations. They are commonly used to reduce the dew point in compressed air, natural gas, landfill gas and biogas systems. Without the ability for regeneration, no additional compressed air will be lost or used. In comparing the power requirement to other compressed air dryers, the deliquescent dryers have the lowest power requirement at 0.2Kw/100 cfm of air. (This energy rating is only due to the additional power required for the air compressor to overcome the pressure drop in the dryer).

Some disadvantages in using the deliquescent dryers is that the hygroscopic material degrades. The deliquesced liquid does have to be drained and disposed, and new material does have to be added. Even though they do not have any moving parts, they still require periodic maintenance. The deliquescent material can be corrosive. So, after-filters are required to capture any liquid or dust material that may carry over and damage downstream piping and pneumatic components. Also, the variation in the dew point suppression can limit locations and areas where it can be used.

If you have questions about getting the most from your compressed air system, or would like to talk about any EXAIR Intelligent Compressed Air® Products, you can contact an Application Engineer at EXAIR. We would be happy to hear from you.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

Photos:  used from Compressed Air Challenge Handbook

Heat of Compression Dryers

A Heat of Compression regenerative desiccant dryer for compressed air

Before compressed air can be realistically utilized, it needs to be delivered to the point of use with proper volume and pressure, and it should also be clean and have some moisture removed.  We have information available regarding cleaning compressed air, but how do you dry the compressed air?  And why do you dry the compressed air?

Drying compressed air is akin to removing the humidity in the air when using an air conditioning system.  If the moisture is not removed, the effectiveness of the system is reduced and the ability to use the output of the system is reduced as well.

But, from a functional standpoint, what does this really mean?  What will take place in the compressed air system if the air is not dried and the moisture is allowed to remain?

The answer is in the simple fact that moisture is damaging.  Rust, increased wear of moving parts, discoloration, process failure due to clogging, frozen control lines in cold weather, false readings from instruments and controls – ALL of these can happen due to moisture in the compressed air.  It stands to reason, then, that if we want long-term operation of our compressed air products, having dry air is a must.

So, how can we remove the moisture in the compressed air?  One of the most common methods to remove moisture is a regenerative dryer, specifically, heat-of-compression type dryers.  A heat of compression type dryer is a regenerative desiccant dryer which uses the heat generated by the compression of the ambient air to regenerate the moisture removing capability of the desiccant used to dry the compressed air.

When using one of these dryers, the air is pulled directly from the outlet of the compressor with no cooling or treatment to the air and is fed through a desiccant bed in “Tank 1” where it regenerates the moisture removing capabilities of the desiccant inside the tank.  The compressed air is then fed through a regeneration cooler, a separator, and finally another desiccant bed, this time in “Tank 2”, where the moisture is removed.  The output of “Tank 2” is supplied to the facilities as clean, dry compressed air.  After enough time, “tank 1” and “tank 2” switch, allowing the hot output of the compressor to regenerate the desiccant in “tank 2” while utilizing the moisture removing capabilities of the desiccant in “tank 1”.

Heat of compression dryers offer a lower power cost when compared to other dryers, but they are only applicable for use with oil free compressor and to compressors with high discharge temperatures.  If output air temperatures from the compressor are too low, a temperature booster/heater is needed.

If you have questions about your compressed air system and how the end use devices are operating, contact an EXAIR Application Engineer.  We’ll be happy to discuss your system and ways to optimize your current setup.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

 

Heated Desiccant Dryer by Compressor1.  Creative Commons License

Intelligent Compressed Air: Desiccant Dryers – What are they and How Do they Work?

Desiccant dryer
Heat of Compression Desiccant Dryer

No matter where you are in the world, the atmospheric air will contain water vapor. As this air cools to the saturation point, also known as dew point, the vapor will condense into liquid water. The amount of this moisture will vary depending on both the ambient temperature and the relative humidity. According to the Compressed Air Challenge, a general rule of thumb is that the amount of moisture air can hold at a saturated condition will double for every 20°F increase in temperature. In regions or periods of warmer temperatures, this can create a significant problem. Some problems that can be associated with moisture-laden compressed air include:

  • Increased wear of moving parts due to removal of lubrication
  • Formation of rust in piping and equipment
  • Color variation, adherence, and finish of paint that is applied using moisture-laden compressed air
  • Create unstable conditions for processes that are dependent upon pneumatic controls. Malfunctions due to rust, scale, or clogged orifices can damage product or cause costly shutdowns
  • In colder temperatures, moisture in the compressed air flow can freeze in the control lines

To remove moisture from the lines, a dryer must be installed. One of the most commonly found dryers in a facility are referred to as desiccant dryers. There are three variations of desiccant dryers: Regenerative-Desiccant Dryers, Heat Reactivated Desiccant Dryers, and Heat of Compression Desiccant Dryers.

A Regenerative-Desiccant Dryer uses a porous desiccant that collects and adsorbs the moisture. This allows for large amounts of water to be retained with a minute amount of desiccant. Most regenerative-desiccant dryers consist of two towers. One where wet, moisture-laden compressed air flows through a desiccant bed. A second tower contains desiccant that is being regenerated. A controlled amount of dry air flows through the tower being regenerated, which causes the moisture to release from the desiccant and flow out with the purge flow. This saturated air exhausts to atmosphere. After a set time, the towers will switch and continue this cycle of drying/regenerating.

Another, and more efficient, regenerative-desiccant dryer uses heat to assist in removing water from the desiccant. As the tower is heated, the moisture is no longer adsorbed by the desiccant and is purged through the flow. This style is more efficient than the other styles of dryers because less compressed air is wasted removing the moisture in the tower.

The third type of desiccant dryer is the Heat of Compression dryer. This style utilizes the heat that is generated during compression to accomplish the regeneration of the desiccant. Typically, the heat that is generated from the air compressor is exhausted to atmosphere and wasted. With a heat of compression dryer, this heat is captured and used to regenerate the desiccant. The compressed air passes through the drying section of the desiccant bed, is dried, and exits through the discharge. A portion of the captured heat flows through the opposite side of the dryer to regenerate the desiccant. Afterwards, this hot air passes through a regeneration cooler and is combined with the main air stream. This results in ZERO loss of purge air, making this style of dryer the most efficient available.

If you have questions about how to optimize your compressed air system, contact EXAIR. An Application Engineer is standing by ready to assist you!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

 

Heated Desiccant Dryer by Compressor1.  Creative Commons Attribution-NoDerivs 2.0 Generic.