Heat Recovery from an Air Compressor

On the whole most of us are quite aware of the considerable savings that can be accomplished by wise use and recovery of energy.   One way that a plant can save substantially is to capture the energy that an electric motor adds to the compressed air from the air compressor.  As much as 80% to 93% of the electrical energy used by an industrial air compressor is converted to heat.  A properly designed heat recovery system can capture anywhere between 50% to 90% of this energy and convert it to useful energy.

The heat recovered is sufficient in most cases to use in supplemental ways such as heating water and space heating, however generally there is not enough energy to produce steam directly.

IngersollRand_R-series-R110
Ingersoll Rand Rotary Screw Compressor

 

Packaged air cooled rotary screw compressor lend themselves easily to heat recovery, supplemental heating or other hot air uses very well due to their enclosed design.  Since ambient air is directed across the compressors aftercooler and lubricant cooler where the heat can be easily collected from both the compressed air and the lubricant.

Packaged coolers are normally enclosed cabinets that feature integral heat exchangers and fans.  This type of system only needs ducting and an additional fan to minimize back pressure on the air compressors cooling fan.  This arrangement can be controlled with a simple thermostat operated vent on a hinge and when the extra heat is not required it can be ducted outside the facility.

The recovered energy can be used for space heating, industrial drying, preheating aspirated air for oil burners or  other applications requiring warm air.  Typically there is approximately 50,000 Btu/Hr of energy available from each 100 SCFM of capacity (at full load).  The temperature differential is somewhere between 30°F – 40°F above the air inlet temperature and the recovery efficiency is commonly found to be 80% – 90%.

We all know the old saying there is “no free lunch” and that principle applies here.  If the supply air is not from outside the plant a drop in the static pressure could occur in the compressor cabinet thereby reducing the efficiency of the compressor.  If you choose to use outside air for makeup, you might need some return air to keep the air above freezing to avoid compressor damage.

Heat recovery is generally not utilized with water cooled compressors since an extra stage of heat exchange is required and the efficiency of recovering that heat is normally in the 50% – 60% range.

To calculate annual energy savings:

Energy Savings (Btu/Yr) = 0.80 * compressor bhp * 2,545 Btu/bhp-hour * hours of operation.

If we consider a 50 HP compressor:

.080 * 50bhp * 2,545 Btu/bhp-hour * 2080 hrs/year =  211,744,000 Btu/yr

Where 0.80 is the recoverable heat as a percentage of the units output, 2,545 is the conversion factor.

Cost savings in dollars per year = [(energy savings in Btu/yr)/Btu/fuel) x ($/unit fuel)]/primary heater efficiency.

If you would like to discuss saving money by reducing compressed air demand and/or any EXAIR product,  I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

Photo courtesy of Ingersoll Rand CC BY 3.0, https://en.wikipedia.org/w/index.php?curid=32093890

 

 

About Rotary Screw Air Compressors

Recently, EXAIR Application Engineers have written blogs about reciprocating type air compressors: Single Acting (by Lee Evans) and Dual Acting (by John Ball.) Today, I would like to introduce you, dear EXAIR blog reader, to another type: the Rotary Screw Air Compressor.

Like a reciprocating compressor, a rotary screw design uses a motor to turn a drive shaft. Where the reciprocating models use cams to move pistons back & forth to draw in air, compress it, and push it out under pressure, a rotary screw compressor’s drive shaft turns a screw (that looks an awful lot like a great big drill bit) whose threads are intermeshed with another counter-rotating screw. It draws air in at one end of the screw, and as it is forced through the decreasing spaces formed by the meshing threads, it’s compressed until it exits into the compressed air system.

Rotary Screw Air Compressor…how it works.

So…what are the pros & cons of rotary screw compressors?

Pros:

*Efficiency.  With no “down-stroke,” all the energy of the shaft rotation is used to compress air.

*Quiet operation.  Obviously, a simple shaft rotating makes a lot less noise than pistons going up & down inside cylinders.

*Higher volume, lower energy cost.  Again, with no “down-stroke,” the moving parts are always compressing air instead of spending half their time returning to the position where they’re ready to compress more air

*Suitable for continuous operation.  The process of compression is one smooth, continuous motion.

*Availability of most efficient control of output via a variable frequency drive motor.

*They operate on the exact same principle as a supercharger on a high performance sports car (not a “pro” strictly speaking from an operation sense, but pretty cool nonetheless.)

Cons:

*Purchase cost.  They tend to run a little more expensive than a similarly rated reciprocating compressor.  Or more than a little, depending on options that can lower operating costs.  Actually, this is only a “con” if you ignore the fact that, if you shop right, you do indeed get what you pay for.

*Not ideal for intermittent loads.  Stopping & starting a rotary screw compressor might be about the worst thing you can do to it.  Except for slacking on maintenance.  And speaking of which:

*Degree of maintenance.  Most maintenance on a reciprocating compressor is fairly straightforward (think “put the new part in the same way the old one came out.”)  Working on a rotary screw compressor often involves reassembly & alignment of internal parts to precision tolerances…something better suited to the professionals, and they don’t work cheap.

Like anything else, there are important factors to take under consideration when deciding which type of air compressor is most suitable for your needs.  At EXAIR, we always recommend consulting a reputable air compressor dealer in your area, helping them fully understand your needs, and selecting the one that fits your operation and budget.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook