The Basics of Calculating Heat Load for Cooling Electrical Cabinets

Is your electrical cabinet overheating and causing expensive shut downs? As spring and summer approach, did your enclosures have seasonal overheating problems last year? Is your electrical cabinets AC Unit failing and breaking down? Then it may be time to consider EXAIR Cabinet Coolers Systems. These systems are compressed air powered cooling units designed to keep your cabinet cool in hot environments. Major benefits include no moving parts to wear out, UL listed to maintain the NEMA integrity of your enclosure (also CE compliant), they are simple and quick to install and they reliably turn on and off as needed (perfect for solving seasonal overheating).

Just one question then; how do you pick which Cabinet Cooler is best for your application? It’s time to bust out ye ole trusty calculator and crunch some numbers. Keep in mind that the following calculations use baselines of an Inlet air pressure of 100 psig (6.9 bar), compressed air temperature of 70F (22C), and a desired internal temp of 95F (35C). Changes in these values will change the outcome, but rest assured a Cabinet Cooler system will generally operate just fine with changes to these baselines.

How the EXAIR Cabinet Cooler System Works


Before we dig right into the math, keep in mind you can submit the following parameters to EXAIR and we will do the math for you. You can use our online Cabinet Cooler Sizing Guide and receive a recommendation within 24 hours.

There are two areas where we want to find the amount of heat that is being generated in the environment; this would be the internal heat and the external heat. First, calculate the square feet exposed to the air while ignoring the top. This is just a simple surface are calculation that ignores one side.

(Height x Width x 2) + (Height x Depth x 2) + (Depth x Width) = Surface Area Exposed

Next, determine the maximum temperature differential between the maximum surrounding temperature (max external temp) and the desired Internal temperature. Majority of cases the industrial standard for optimal operation of electronics will work, this value is 95F (35C).


Max External Temp – Max Internal Temp Desired = Delta T of External Temp

Now that we have the difference between how hot the outside can get and the max, we want the inside to be, we can look at the Temperature Conversion Table which is below and also provided in EXAIR’s Cabinet Cooler System catalog section for you. If your Temperature Differential falls between two values on the table simply plug the values into the interpolation formula.

Once you have the conversion factor for either Btu/hr/ft2, multiply the Surface Area Exposed by the conversion factor to get the amount of heat being generated for the max external temperature. Keep this value as it will be used later.

Surface Area Exposed x Conversion Factor = External Heat Load

Now we will be looking at the heat generated by the internal components. If you already know the entire Watts lost for the internal components simply take the total sum and multiply by the conversion factor to get the heat generated. This conversion factor will be 3.41 which converts Watts to Btu/hr. If you do not know your watts lost simply use the current external temperature and the current internal temperature to find out. Calculating the Internal Heat Load is the same process as calculating your External Heat Load just using different numbers. Don’t forget if the value for your Delta T does not fall on the Temperature conversion chart use simple Interpolation.

Current Internal Temp – Current External Temp = Delta T of Internal Temperature
Surface Area Exposed x Conversion Factor = Internal Heat Load

Having determined both the Internal Heat Load and the External Heat Load simply add them together to get your Total Heat Load. At This point if fans are present or solar loading is present add in those cooling and heating values as well. Now, with the Total Heat Load match the value to the closet cooling capacity in the NEMA rating and kit that you want. If the external temperature is between 125F to 200F you will be looking at our High Temperature models denoted by an “HT” at the start of the part number.

From right to left: Small NEMA 12, Large NEMA 12, Large NEMA 4X

If you have any questions about compressed air systems or want more information on any of EXAIR’s products, give us a call, we have a team of Application Engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Cooling Electronics Down With Cabinet Coolers

As the summer days have reached maximum temperatures, I find myself busting out my kayak and heading down to the wild whitewater rivers for a weekend full of adventure in the cool water. I personally am not a fan of the heat and as most people enjoy the water and swimming, I partake in the high adventure sport of whitewater kayaking. I’ve been around the sport of whitewater most of my life and have kayaked some of the hardest rivers east of the Mississippi including the well-known rivers of the Upper Gauley, the New River, and the Tallulah.

When the temperature rises and I start to overheat and kayaking is the best way that I enjoy to cool off and enjoy the weekend; splashing around in the wild waves. With plenty of summer heat ahead of us it’s a perfect chance for all to get outside and jump in a lake, swimming pool, or even a river to cool down and take a chance to enjoy a little fun.

Baby Falls on the Tellico River

But what about your electrical cabinets; they deserve to stay nice and cool on the inside as well. All electrical components are not 100% efficient meaning that when an electrical current is flowing through them a certain amount of heat is generated. This phenomenon is commonly referred to as heat loss and VFD’s and other drives are typical offenders. Heat loss is not the only thing that can attribute to electrical cabinets overheating, sun light is another big factor for outside electrical cabinets. Based on the color of a cabinet sitting out in the sun a specific percentage of heat is absorbed into the cabinet; black absorbs the most heat and white absorbs the least. In most cases solar heat can be negated by installing a cover over top of the cabinet to provide shade.

From right to left: Small NEMA 12, Large NEMA 12, Large NEMA 4X

At EXAIR we have designed a cost-effective way to cool down these overheated cabinets during these summer months. EXAIR’s Cabinet Coolers are designed to provide cooling using just a source of compressed air; they utilize our vortex tube to provide a constant source of cold air as long as they are connected to a source of compressed air. Our Cabinet Coolers have also been designed to be used in a large variety of environments ranging from standard production to Classified environments.

NEMA 4 Dual Cabinet Cooler System with ETC

EXAIR also can provide our Electronic Thermostat Control system or ETC for short which can give a user much better control over the temperature inside the cabinet as well as visual feedback of the internal temperature. The ETC allows for easy and constant changing of what internal temperature is desired. The ETC will also provide live temperature readings on the internal temperature of the cabinet.

If you have any questions about compressed air systems or want more information on any of EXAIR’s products, give us a call, we have a team of Application Engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook