Optimizing Compressed Air Systems in Six Easy Steps

Knowing your compressed air needs and understanding the limitations of your equipment is essential when optimizing your compressed air system. Everything about compressed air systems are interrelated. Items putting demand on your system can and will effect how the equipment supplying the demand will operate. Taking a holistic approach when optimizing your compressed air system will not only give you a better understanding of your supply and demand requirements but will also serve as the most efficient means to optimize your process. Now lets look at the six steps to optimizing.

  1. Measure: the air consumption You must create a baseline to understand your demand requirements. How can you measure your improvements if you do not understand your total demand or baseline? Installing an EXAIR Flow Meter to your main air lines will help identify the amount of compressed air demand you have and help identify areas of concern.
  2. Find and fix leaks in the system: The repair of compressed air leaks is one of easiest ways to gain energy savings. In most cases all you need is a keen sense of hearing to locate a leak. Once a you have confirmed a leak then the make the necessary repairs. Harder to find leaks may require tools such as EXAIR’s Ultrasonic Leak Detector. This is a hand held high quality instrument that can be used to locate costly air leaks.
  3. Upgrade your blow off, cooling and drying operations: Updating your compressed air process tooling can save you energy and help you comply with OSHA noise and safety regulations. An example would be to replace old blow off or open pipe systems with EXAIR Safety Air Nozzles. Replacing open copper tubes or pipes can amount up to 80% air savings. You achieve lower sound levels and significant energy savings.
  4. Turn off the compressed air when it isn’t in use: It sounds obvious but how many times has an operator left for a break or lunch and doesn’t shut off the compressed air for his/her station? The minutes add up to a significant amount of time annually meaning there is opportunity for energy savings. The use of solenoid valves will help but EXAIR’s Electronic Flow Control (EFC) will dramatically reduce compressed air costs with the use of a photoelectric sensor and timing control.
  5. Use intermediate storage of compressed air near the point of use: The use of storage receivers can improve your overall system efficiency in a number of ways. For example, using a main air receiver at the compressor room can make load/unload compressor control more efficient. Localizing receiver tanks such as EXAIR’s 9500-60 sixty gallon receiver tank by the point of use for a high demand process will stabilize the demand fluctuations allowing a more fluid operation.
  6. Control the air pressure at the point of use to minimize air consumption: The use of pressure regulators will resolve this issue. Using regulators you can control the amount of air being processed at each point of use. EXAIR offers different sized pressure regulators depending upon your air line and process requirements. Regulating the compressed air to the minimum amount required and will reduce your overall demand resulting in annual savings and a payback schedule.

Compressed air optimization can definitely be implemented using low cost and manual procedures but sometimes you will need a higher level means to achieve your goal. EXAIR has many optimization products to support your efforts. You can review our catalog, blogs and videos at www.EXAIR.com or by calling 800.903.9247 and any of our qualified Application Engineers will assist you.

Eric Kuhnash
Application Engineer
E-mail: EricKuhnash@exair.com
Twitter: Twitter: @EXAIR_EK

Six Steps to Compressed Air Optimization: Step 2 – Find and Fix Leaks.

Since air compressors use a lot of electricity to make compressed air, it is important to use the compressed air as efficiently as possible.  The compressed air system is considered to be the “forth” utility behind gas, water, and electricity.  It is necessary for pneumatic systems, but it is the least efficient of the utilities.  For every $1.00 that is put into making compressed air, you only get roughly 5¢ of work from it.  EXAIR has six simple steps to optimize your compressed air system.  Following these steps will help you to cut electrical costs, reduce overhead, and improve your bottom line.  In this blog, I will cover the second step – find and fix leaks.

One of the largest problems affecting compressed air systems is leaks.  That quiet little hissing sound from the pipe lines is costing your company much money.  A study was conducted by a university to determine the percentage of air leaks in a typical manufacturing plant.  In a poorly maintained system, they found on average that 30% of the compressor capacity is lost through air leaks.  For a 100 hp compressor, you are losing 30 hp into the ambient air.  To put a dollar value on it, a leak that you cannot physically hear can cost you as much as $130/year.  That is just for one inaudible leak in hundreds of feet of compressed air lines.  For the leaks that you can hear, you can tell by the chart below (**Note 1) the amount of money that can be wasted by the size of the hole.  Unlike a hydraulic system, compressed air is clean; so, leaks will not appear at the source.  You have to locate them by some other means.

Most leaks occur where you have threaded fittings, connections, hoses, and pneumatic components like valves, regulators, and drains.  The Optimization product line from EXAIR are designed to help improve your compressed air system, and the most effective way is to eliminate leaks.  The Ultrasonic Leak Detectors can find the air leaks, and the Digital Flowmeters can monitor your system for air leaks.  With both of these products included in your leak preventative program, you will be able to keep your compressed air system running optimally and reduce the “hidden” cost of leaks.

Ultrasonic Leak Detector

EXAIR Ultrasonic Leak Detector:

When a leak occurs, it emits an ultrasonic noise caused by turbulence from the gas escaping.  This ultrasonic noise can be at a frequency above the audible level for human hearing.  The EXAIR Ultrasonic Leak Detector can pick up these frequencies and make the leaks audible.  With three sensitivity ranges and LED display, you can find very minute leaks.  It comes with two attachments; the parabola to locate leaks up to 20 feet away, and the tube attachment to define the exact location in the pipe line.  Once you find a leak, it can be marked for fixing.

EXAIR’s Digital Flowmeter w/ USB Data Logger

EXAIR Digital Flowmeter:

With the Digital Flowmeters, you can continuously monitor for waste.  Air leaks can occur at any time within any section of your pneumatic area.  You can do systematic checks by isolating sections with the Digital Flowmeter and watch for a flow reading.  Another way to monitor your system would be to compare the results over time.  With the Digital Flowmeters, we have a couple of options for recording the air flow data.  We have the USB Datalogger for setting certain time increments to record the air flows.  Once the information is recorded, you can connect the USB to your computer, and with the downloadable software, you can view the information and export it into an Excel spread sheet.  We also offer a wireless capability option with the Digital Flowmeters.  You can have multiple flow meters that can communicate with your computer to continuously log and record the flow information.  Once the flow information starts trending upward for the same process, then you can use the Ultrasonic Leak Detector to find the leak.  It can also give you a preventative measure if a pneumatic system is starting to fail.

Compressed air leaks will rob you in performance, compressor life, and electrical cost.  It is important to have a leak preventative program to check for leaks periodically as they can happen at any time.  The EXAIR Ultrasonic Leak Detector and the Digital Flowmeters will help you accomplish this and optimize your compressed air system.  Once you find and fix all your leaks, you can then focus on improving the efficiency of your blow-off devices with EXAIR products and save yourself even more money.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

**Note 1: Chart was published by Compressed Air Challenge in April 1998 – Rev. 0

Benefits of an Ultrasonic Leak Detector

Ultrasonic Leak Detector

As margins get tighter and cost of manufacturing climbs, industries are looking into different areas to be more efficient.  A big focus nowadays is in their compressed air system.  Why is this?  Manufacturers are starting to realize that it takes an abundant amount of electricity to make compressed air.  That is why EXAIR manufactures compressed air products for optimization to get the best efficiency.  But what many manufacturers don’t realize is that quiet little hissing sound from there compressed air lines is costing them much money.   That is why EXAIR has the Ultrasonic Leak Detector.

Finding leaks will save you money

Energy Star, a federal voluntary program ran by the Environmental Protection Agency, offers energy-efficient solutions.  EXAIR has partnered with Energy Star because it underscores our commitment to improve energy savings.  They even wrote an excerpt about compressed air leaks here: Energy Tips: Minimize Compressed Air Leaks.  With compressed air leaks, it can be as much as 30% of your compressed air usage.

When a leak occurs, it emits an ultrasonic noise.  The EXAIR Ultrasonic Leak Detector can pick this up.  It has a frequency range from 20 KHz to 100 KHz, above human hearing, so it can make the inaudible leaks, audible.  With three sensitivity ranges and LED display, you can find very minute leaks.  It comes with headphones and two attachments; the parabola attachment to find leaks up to 20 feet (6 meters) away, and the tube attachment for local proximity to define the exact location of the leak.

In the Energy Tips from Energy Star, they reference estimated leak rates and costs associated with these leaks.  They also recommend a leak prevention program with reference materials to help improve energy savings.  As part of that program, an Ultrasonic Leak Detector is the best way to begin.

Checking pipe fittings

To tell a common success story about the Ultrasonic Leak Detector, an EXAIR customer had a 50-horsepower air compressor.  It started to overwork, overheat, and occasionally shut down.  He thought that he would need to buy a larger air compressor to keep his plant running.  In discussing his problems and requirements, he decided to purchase an Ultrasonic Leak Detector from EXAIR to check for leaks as a possible cause.  He checked every fitting and connection in his facility.  When he finished checking the compressed air system, he found 91 leaks.  (You will be surprised with your system if it is not well maintained).

If we look at a very small 1/16” (1.6mm) diameter hole at 80 PSIG (5.5 bar), it will cost you $360 a year per leak (based on 6000 working hours per year).  Thus, 91 leaks at $360/year will equal $32,760 per year.  After the fittings were reworked with piping compound, the compressor was back operating in a normal range.  There was no need to buy a larger air compressor with capital funds, and he was able to save $32,760 a year by finding and fixing the leaks.

As a little secret with the Ultrasonic Leak Detector, it can do more than find compressed air leaks.  Any issue that creates an ultrasonic noise, the Ultrasonic Leak Detector can find it.  This will include air damper seals, circuit breakers, cracked rubber belts, gas burner leaks, refrigerant leaks, worn bearings, and air brake systems on trucks.  It is a handy tool to find potential issues or problems in other areas other than compressed air systems.

For optimization of your compressed air system, it is very important to find and correct leaks in your piping system.  The Ultrasonic Leak Detector can help you do that.  It is an inexpensive way to solve an expensive problem, compressed air leaks.  If you would like to discuss the features and benefits in more detail, you can contact an Application Engineer at EXAIR.  We will be glad to help you.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

No Matter The Size of The System, Air Leaks Should be Fixed

Just last night I was in my garage tinkering around with a vintage Coleman Camping lantern from 1949 that I am working on refurbishing. I grabbed my parts washing bin (A bread pan my wife let me have because she didn’t like the way it cooked bread) and was reminded that I had been soaking a helmet lock from a friends dirt bike in a penetrating oil. I removed the lock from the pan, wiped it down, then went to my trusty 30 gallon compressor to use a Safety Air Gun to blow the residual oil out of the lock.

When not in use my compressor stays turned off and I modified the factory outlet to include a quarter turn ball valve so that I can retain all air in the receiver tank and not have to charge the tank up every time that I use it. As I turned the valve on I was reminded that I have a rather large air leak that can drain the 30 gallon tank down from 150 psig to 60 psig within a few hours.

While my air system is almost as simple as it can be, single air hose real with an additional quick disconnect before the hose reel for small quick blow offs, it still has over a dozen connections within the system. While my worst offending leak is audible to my slightly aged ears there are other leaks that I cannot see or hear. That is unless I use one of two methods I know to find leaks.

The easiest is right out of our 6 Steps of Compressed Air Optimization, the Ultrasonic Leak Detector (ULD). The ULD is a versatile, low cost, hands free electronic device that will quickly and easily detect the general vicinity of a leak and then easily pinpoint the exact point of the leak. In conducting a test, it took right at twenty minutes to test each of the connections within my system and identify which connections had leaks. The actual repairs of the leaks around an hour. Before fixing though I timed the amount of time it took a friend to use the soapy water method to detect the same leaks.

The soapy water method timed in at around thirty-five minutes for the same number of connections. This was due to a few of the fittings needing to be tested multiple times because of small leaks. It then took an additional fifteen minutes to wipe up all the soapy water that was now dripping down the air line and around the fittings.

While both methods found the same leaks and the ULD performed the task quicker and without any cleanup required, the true focus was on all leaks being repaired. My system has a dozen connection points for a two outlet compressed air system that are regulated and filtered at a single point. This system was draining a 30 gallon tank within a few hours which costs me every time I used my compressor and did not shut off the valve that shuts off the system.

This burden on my electrical bill was removed with less than two hours of labor and I can now leave the compressor fully charged and have air as soon as I need it rather than having to wait for the tank to charge up. Had this been in a production environment the cost could have crippled production resulting in catastrophic.

If you would like to discuss how leaks within your system can easily be found by using the ULD or would like to learn more about the other five steps in our Six Steps To Compressed Air Optimization, contact an Application Engineer.

Brian Farno
Application Engineer
Ph. 1-513-671-3322
BrianFarno@EXAIR.com
@EXAIR_BF

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF