Finding & Fixing Leaks: The Benefits of Creating a Leak Detection Program

Leaks in a compressed air system can be a substantial source of wasted energy. A facility that hasn’t maintained their compressed air system will likely have a leak rate around 20-30% of the total air production.  But with a leak detection plan you can reduce air leaks to less than 10% of the compressor output.

uhd

Along with the energy waste, leaks will contribute to higher operating cost.  Leaks cause a drop in system pressure, which can make air tools operate poorly, harming production cost and time. In addition, by forcing the equipment to cycle more often, leaks shorten the life of almost all system equipment, including the compressor. Increased running time can also lead to added maintenance and increased downtime. Finally, leaks can lead to adding unnecessary compressor volume.

Since air leaks are almost impossible to see, other methods must be used to locate them. The best way to detect leaks is to use an ultrasonic acoustic detector, Like EXAIR Ultrasonic Leak Detector (ULD). This unit can recognize the high frequency hissing sounds associated with air leaks. A person using the ULD only needs to point it in the direction of the suspected leak. When a leak is present, an audible tone can be heard with the use of the head phones, and the LED display will light.  Testing various unions, pipes, valves and fittings of a complete system can be done quickly and effectively at distances up to 20’ away!

uhd kk

uhd e

The advantages of ultrasonic leak detection include flexibility, speed, ease of use, the ability to test the system while machines are running, and the ability to find a wide variety of leaks. They involve very little training, operators often become competent after 10 minutes of training.

Due to the nature of ultrasound, it is directional in transmission. For this reason, the signal is loudest at its source. By scanning around a test area, it is possible to very quickly target in on a leak site and pin point its exact location. For this reason, ultrasonic leak detection is not only fast, it is also very accurate.

An active leak prevention program will embrace the following components: identification, tracking, repair, verification, and employee participation. All facilities with a compressed air system should establish an aggressive leak reduction program. A team involving managerial representatives from production should be formed to carry out this program.

A leak prevention program should be part of an overall program intended to improve the performance of compressed air systems. Once the leaks are found and repaired, the system should be started from the beginning until all leaks are addressed.

A good compressed air system leak repair program is very important in maintaining the efficiency, reliability, stability and cost effectiveness of any compressed air system.

kkkk

“First a Plant Engineer or Maintenance Supervisor must realize that leak repair is a journey, not a destination. An ongoing compressed air leak monitoring and repair program should be in place in any plant that has a compressed air system.” Explains Paul Shaw, a General Manager for Scales Industrial Technologies’ Air Compressor Division, and an Advanced CAC Instructor, “Leak identification and remediation with a high quality repair can lead to substantial energy savings that typically has a very rapid payback, usually a year or less. In the hundreds of leak audits and repairs that we have done we’ve found that the quality of the repair is critical to ensuring the customer receive the most value for his investment and that the leak remains repaired for as long as possible. From there, constantly monitoring for compressed air leaks and repairing them as they occur can help the plant continue to reap the energy benefits.”

Above is an excerpt from “Best Practices for Compressed Air Systems”, Appendix 4.E.1.

To discuss your application and how an EXAIR Intelligent Compressed Air Product can help your process, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Professor Penurious, Mystery Solver!

ZOINKS! What have Professor Penurious and the gang gotten into this time? Enjoy viewing this video – we sure do enjoy making them…And recognizing that some day the Oscar committee will be calling.

Russ Bowman
Application Engineer
(513)671-3322 local
(800)923-9247 toll free
(513)671-3363 fax
Find us on the Web
Follow me on Twitter 
Like us on Facebook

Supervisory Control Systems

SCS Interface

Like I like to do, I’ve been doing some reading about compressed air and compressed air control.  A few weeks ago I wrote about throughput control and I’ve been going over a case study about supervisory control systems (SCS).  These are the devices which dictate primary and secondary compressor system operation to maximize not only throughput, but efficiency too.

In the same blog mentioned above I discussed the methods used to control a compressor, and the other side of that equation is the actual controller which is giving the commands.  These supervisory type of controls are happily routed through a PLC so that, for example, when the discharge flow spikes, a suction throttle valve can be cycled on to restrict the intake flow.  A feedback loop that functions in real time, with controlled set points, can take a compressed air system to the next level.

In the photo at the top of this blog a sketch of the SCS for a hybrid system is shown.  This is from a case study which walks through the blending of a centrifugal compressor and a reciprocating compressor.  On the surface this sounds like it may be complicated and in actuality it’s extremely complicated.  Apparently the biggest problem is heat accumulating as a result of load fluctuations.  In addition to the heat load, there’s the logic needed to allow each compressor to start in sequence, independently, or manually.  For this application, the solution was found using two main lines and two sub lines of ladder logic.  Simple and clever at the same time!

SCS Ladder Logic

Do you have a similar setup to share or interest in this particular case study?  Email me at LeeEvans@EXAIR.com and we can correspond directly.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE