Six Steps to Optimization: Step 6 – Control the Air Pressure at the Point of Use to Minimize Air Consumption

Since air compressors use a lot of electricity to make compressed air, it is important to use the compressed air as efficiently as possible.  EXAIR has six simple steps to optimize your compressed air system.  Following these steps will help you to cut your production costs and improve your bottom line.  In this blog, I will cover the sixth step; controlling the air pressure at the point of use.

Regulators

One of the most common pressure control devices is called the Regulator.  It is designed to reduce the downstream pressure that is supplying your system.  Regulators are commonly used in many types of applications.  You see them attached to propane tanks, gas cylinders, and of course, compressed air lines.  Properly sized, regulators can flow the required amount of gas at a regulated pressure for safety and cost savings.

EXAIR designs and manufactures compressed air products to be safe, effective, and efficient.  By replacing your “old types” of blowing devices with EXAIR products, it will save you much compressed air, which in turn saves you money.  But, why stop there?  You can optimize your compressed air system even more by assessing the air pressure at the point-of-use.  For optimization, using the least amount of air pressure to “do the job” can be very beneficial.

1100 Super Air Nozzles

Why are regulators important for compressed air systems?  Because it gives you the control to set the operating pressure.  For many blow-off applications, people tend to overuse their compressed air.  This can create excessive waste, stress on your air compressor, and steal from other pneumatic processes.  By simply turning down the air pressure, less compressed air is used.  As an example, a model 1100 Super Air Nozzle uses 14 SCFM of compressed air at 80 PSIG (5.5 bar).  If you only need 50 PSIG (3.4 bar) to satisfy the blow-off requirement, then the air flow for the model 1100 drops to 9.5 SCFM.  You are now able to add that 4.5 SCFM back into the compressed air system. And, if you have many blow-off devices, you can see how this can really add up.

In following the Six Steps to optimize your compressed air system, you can reduce your energy consumption, improve pneumatic efficiencies, and save yourself money.  I explained one of the six steps in this blog by controlling the air pressure at the point of use.  Just as a note, reducing the pressure from 100 PSIG (7 bar) to 80 PSIG (5.5 bar) will cut your energy usage by almost 20%.  If you would like to review the details of any of the six steps, you can find them in our EXAIR blogs or contact an Application Engineer at EXAIR.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Intelligent Compressed Air: Save $$ With a Leak Prevention Program

waste
Don’t let leaks drive up your utility bill

The generation of compressed air accounts for approximately 1/3 of all energy costs in an industrial facility. According to the Compressed Air Challenge, about 30% of that compressed air is lost through leaks. This means nearly 10% of your facility’s energy costs are simply wasted through poor connections, faulty air valves, improper installation, etc. In addition to simply wasting money, compressed air leaks can also contribute to a variety of other operating losses. A leak can cause a drop in system pressure. When this occurs, end users may not operate as efficiently, having an adverse effect on production. This same drop in system pressure will also cause the equipment to cycle on/off more often, shortening the life of your compressor and other equipment. If the leaks cause an issue in supply volume, it may lead to the belief that more compressor capacity is necessary, further increasing your operating costs.

To put leaks in perspective (assuming energy costs of .10/ kWh), the Compressed Air Challenge states this:

  • A $200/year leak cannot be felt or heard
  • A $800/year leak can be felt, but not heard
  • A $1,400/year leak can be felt and heard.

If you walk through your facility, how many leaks can you hear?

We know that a large portion of the compressed air is being wasted, but what do we do about it? A proper leak prevention plan is the key to success. Since these leaks are impossible to see and some cannot even be heard, you need a tool to help assist you. EXAIR’s model 9061 Ultrasonic Leak Detector is the right tool for the job. When compressed air leaks through a pipe, it creates an ultrasonic signature due to turbulence. While this sound is not always detectable by the human ear, this meter will allow you to locate leaks up to 20’ away.

 

ultrasonic_2
Model 9061 with parabola attachment

The first step will be locating the leaks using an Ultrasonic Leak Detector and tagging them throughout the facility. Don’t let this overwhelm you!! If you have a larger facility, break it up into sections that can be completed in 1 day. This will allow you to decide which areas of the plant should be looked at first. Once you’ve located and tagged all of the leaks, rate them under two separate criteria so that you can prioritize what to fix first. Rate them based on the difficulty that it will take to fix them and also by the severity of the leak. Those that are severe yet easy to fix would make sense to begin fixing first. Those that may require a period of shutdown can be planned to fix at a more appropriate time.

ULD_Kit
Accessories that come with the Ultrasonic Leak Detector

When you’ve had the opportunity to fix them, don’t just forget about it. When new piping is installed, new lines are added, or anything involving compressed air is installed there is the potential for new leaks to develop. Set this as one of your regular PM activities and complete your own compressed air audit once a year. Implementing the process and maintaining it are the keys to your success.

If you have questions about developing a leak program or how to use the Ultrasonic Leak Detector, give us a call. An Application Engineer will be happy to help with the process and recommend additional methods to save on your compressed air supply.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Reducing Lubricant in a Blanking Operation

We recently chatted with a customer that was looking to improve the lubrication system for multiple blanking lines.  Blanking involves the cutting of sheet metal in a single step, to separate the piece form the surrounding stock. The part that is cut out is the desired product and  is called the ‘blank.’  This operation can be moderate to fast in speed, and the process creates heat, so a lubricant is used to cool and decrease the wear on the tooling.  Our customer was looking for a better way to apply the lubricant.

We proposed the model AN2010SS, a No Drip, internal mix, narrow angle, round fan Atomizing Nozzle.  The nozzle uses compressed air to create a mist of the liquid with very fine droplet size. When using for the  lubricant, a fine layer can be applied over the entire surface without areas of over coverage and waste.  This leads to lower costs for lubricant, and less mess on the blanks.

No Drip Atomizing Nozzle
No Drip Atomizing Nozzle

To simplify the process, the No Drip model was chosen. The No Drip style has the added benefit of positively stopping liquid flow when the compressed air is turned off.  There is no need to independently control the liquid flow via a control system and valve.

Finally, to control the compressed air side, we recommend the Electronic Flow Control (EFC.)  Utilizing a photoelectric sensor, the open position of the press can be detected and using 1 of many program options, the compressed air can be turned on and off to accurately control the application of the lubricant.  Due to the excessive amount of lubricant being used, the customer was applying every other cycle.  The first blank would be overly lubricated so that there would be some remaining for the next.  With the Atomizing Nozzle and EFC, the right amount of lubricant can be applied for each cycle.  The result is reduced lubricant usage, and a better operation.

EFCp4

If you have questions regarding Atomizing Nozzles or any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB