EXAIR Standard Air Knife Keeps Bottles Free From Contaminants

Recently I worked with a customer on an application to remove contaminants from the inside of glass bottles. During production, dust from the ambient environment was collecting inside of the bottles. They needed a way to remove it prior to filling. The solution was to briefly pause the conveyor, pulsing air into the bottles to free any dust that had accumulated. Their problem was that while the dust was blowing out of the bottle without an issue, some of it was settling back down into the bottles.

P_20190502_123926_vHDR_On

The customer needed a way to mitigate the risk of dust particles resettling into the bottles after it was removed. The solution was to install a Model 2012 12” Standard Air Knife to provide a curtain of air across the top of the bottles, catching any freed dust particles and blowing them away from the conveyor.

After noticing positive results, we wanted to take things one step further and help to reduce overall air consumption in the process. The blowoff was achieved with (8) ¼” open tubes operating at a pressure of 80 PSIG. Although they were only operating for a fraction of a second, they still consume a whopping 33 SCFM! Replacing them with Model 1101 ¼” NPT Super Air Nozzles (14 SCFM at 80 PSIG) resulted in compressed air savings of 58%!!

In addition to saving compressed air, the noise level was also dramatically reduced. At just 74 dBA, we’re below the threshold for an 8-hour exposure time for operators according to OSHA. Where earplugs were necessary before, they’re now able to operate safely without the need for PPE to protect their hearing. The second most effective fundamental method of protecting workers, according to NIOSH, is to substitute or replace the hazard with an engineered solution. It’s not possible to eliminate the hazard as a compressed air blowoff was necessary, but the next best step is to replace it with something safer.

HierarchyControls

In addition to complying with OSHA 1910.95(a), the Super Air Nozzle also cannot be dead-ended. In applications for compressed air blowoff with unsafe nozzles, pipes, or tubes, the pressure must be regulated down to below 30 PSIG according to OSHA 1910.242(b). The installation of an engineered compressed air nozzle by EXAIR allows you to operate safely at much higher pressures.

If you have inefficient blowoff processes in your facility, give one of our Application Engineers a call. We’ll be happy to take a closer look at your application and recommend a safe, reliable, engineered solution!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Six Steps to Optimization: Step 6 – Control the Air Pressure at the Point of Use to Minimize Air Consumption

Since air compressors use a lot of electricity to make compressed air, it is important to use the compressed air as efficiently as possible.  EXAIR has six simple steps to optimize your compressed air system.  Following these steps will help you to cut your production costs and improve your bottom line.  In this blog, I will cover the sixth step; controlling the air pressure at the point of use.

Regulators

One of the most common pressure control devices is called the Regulator.  It is designed to reduce the downstream pressure that is supplying your system.  Regulators are commonly used in many types of applications.  You see them attached to propane tanks, gas cylinders, and of course, compressed air lines.  Properly sized, regulators can flow the required amount of gas at a regulated pressure for safety and cost savings.

EXAIR designs and manufactures compressed air products to be safe, effective, and efficient.  By replacing your “old types” of blowing devices with EXAIR products, it will save you much compressed air, which in turn saves you money.  But, why stop there?  You can optimize your compressed air system even more by assessing the air pressure at the point-of-use.  For optimization, using the least amount of air pressure to “do the job” can be very beneficial.

1100 Super Air Nozzles

Why are regulators important for compressed air systems?  Because it gives you the control to set the operating pressure.  For many blow-off applications, people tend to overuse their compressed air.  This can create excessive waste, stress on your air compressor, and steal from other pneumatic processes.  By simply turning down the air pressure, less compressed air is used.  As an example, a model 1100 Super Air Nozzle uses 14 SCFM of compressed air at 80 PSIG (5.5 bar).  If you only need 50 PSIG (3.4 bar) to satisfy the blow-off requirement, then the air flow for the model 1100 drops to 9.5 SCFM.  You are now able to add that 4.5 SCFM back into the compressed air system. And, if you have many blow-off devices, you can see how this can really add up.

In following the Six Steps to optimize your compressed air system, you can reduce your energy consumption, improve pneumatic efficiencies, and save yourself money.  I explained one of the six steps in this blog by controlling the air pressure at the point of use.  Just as a note, reducing the pressure from 100 PSIG (7 bar) to 80 PSIG (5.5 bar) will cut your energy usage by almost 20%.  If you would like to review the details of any of the six steps, you can find them in our EXAIR blogs or contact an Application Engineer at EXAIR.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

EXAIR Air Nozzle Provides Non-Marring Solution For Rotary Die Cutting

Die Cutting is a highly efficient means to produce large volumes of uniquely shaped parts while creating a low volume of wasted materials. There are several different ways to produce die cut parts with one of the more common being Rotary Die Cutting. A Rotary Die Cutter typically incorporates the material passing between a roller die cutter and a heavy roller anvil to cut the specific shape  then passes the material down a conveyor or feed line while retrieving the waste material in another collection device.

I recently worked with a customer who was starting to see a large volume of scrap in their vinyl and rubber parts die cutting process as the die cut parts themselves were getting stuck onto the rolling die cutter and weren’t getting grabbed by the conveyor rollers. To try and get the parts to eject from the cutter they installed a few 1/4″ open copper tube air lines running across the roller but were concerned with amount of air they were wasting and the high pitch noise levels of close to 100 dBA. They were also seeing some damage to the parts they were able to get loosened from the die as some of the parts would make contact with the pipe, causing a “blemish” on the part, ultimately failing inspection.

I recommend the customer use our Model # 1100-PEEK Super Air Nozzle. The Model # 1100 consumes only 14 SCFM of compressed air (at 80 PSIG), much less than a 1/4″ open pipe, tested at close to 140 SCFM @ 80 PSIG. This nozzle produces a low sound level of only 74 dBA falling well within the allowable noise exposure levels set forth by OSHA. In addition, the PEEK plastic construction provides a non-marring solution in the event one of the parts did make contact with the nozzle.

1100-peek
1100-specs Model # 1100-PEEK Super Air Nozzle with Performance Specs

EXAIR offers a large selection of engineered air nozzles with varying airflow patterns, force, sound levels and materials of construction to meet a wide variety of application requirements. With help selecting the best solution or to discuss your particular application, please give us a call.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

One Super Air Wipe doing the job of 3 Generic Air Wipes

Today, I had the opportunity to the work with a customer, who produces soft seals for the window and door industry. The soft seals are created through a multi-step process, where drying is critical for the overall quality of the product. After the extrusion of PPE (polyphenyl ethers) material, the seal is run through a water bath.  The next step is for the extruded PPE to be dried using compressed air.  After drying, a glue is applied to join the PPE soft seal to an aluminum frame.  If the PPE was not dry from the water bath, the glue would not bond the aluminum and soft seal together.

 

The customer wanted to replace their current compressed air drying system. The current system utilized (3) ceramic air wipes to dry off the PPE seal before the gluing process. He was relatively new to the company or the particular line, so he did not have all the history for the production line during our conversation. We were both wondering why three consecutive air wipes were used when one air wipe should be getting the job done, but we never could figure it out regardless. I pointed out that one EXAIR Super Air Wipe will clean off a variety cross sections in one pass. The old air wipes used 7.6 SCFM of compressed air for each air wipe or a total air flow of 22.8 SCFM to dry the rubber seal. Also, the old air wipes created 80 dB of noise. A correctly sized 1/2″ EXAIR Super Air Wipe would lower that noise to 75 dBA and lower the total air consumption to 13.9 SCFM.

AirWipe

By replacing three inferior ceramic wire dryers with one EXAIR model 2400 Super Air Wipe, the customer was able to get the job done better, reduce his noise level and save compressed air. EXAIR has the broadest line of problem solving compressed air products, if you have a problem area or an application you think we may be able to solve, please let us know. We are happy to assist.

Dave Woerner
Application Engineer
Davewoerner@EXAIR.com
@EXAIR_DW