Benefits of an Ultrasonic Leak Detector

Ultrasonic Leak Detector

As margins get tighter and cost of manufacturing climbs, industries are looking into different areas to be more efficient.  A big focus nowadays is in their compressed air system.  Why is this?  Manufacturers are starting to realize that it takes an abundant amount of electricity to make compressed air.  That is why EXAIR manufactures compressed air products for optimization to get the best efficiency.  But what many manufacturers don’t realize is that quiet little hissing sound from there compressed air lines is costing them much money.   That is why EXAIR has the Ultrasonic Leak Detector.

Finding leaks will save you money

Energy Star, a federal voluntary program ran by the Environmental Protection Agency, offers energy-efficient solutions.  EXAIR has partnered with Energy Star because it underscores our commitment to improve energy savings.  They even wrote an excerpt about compressed air leaks here: Energy Tips: Minimize Compressed Air Leaks.  With compressed air leaks, it can be as much as 30% of your compressed air usage.

When a leak occurs, it emits an ultrasonic noise.  The EXAIR Ultrasonic Leak Detector can pick this up.  It has a frequency range from 20 KHz to 100 KHz, above human hearing, so it can make the inaudible leaks, audible.  With three sensitivity ranges and LED display, you can find very minute leaks.  It comes with headphones and two attachments; the parabola attachment to find leaks up to 20 feet (6 meters) away, and the tube attachment for local proximity to define the exact location of the leak.

In the Energy Tips from Energy Star, they reference estimated leak rates and costs associated with these leaks.  They also recommend a leak prevention program with reference materials to help improve energy savings.  As part of that program, an Ultrasonic Leak Detector is the best way to begin.

Checking pipe fittings

To tell a common success story about the Ultrasonic Leak Detector, an EXAIR customer had a 50-horsepower air compressor.  It started to overwork, overheat, and occasionally shut down.  He thought that he would need to buy a larger air compressor to keep his plant running.  In discussing his problems and requirements, he decided to purchase an Ultrasonic Leak Detector from EXAIR to check for leaks as a possible cause.  He checked every fitting and connection in his facility.  When he finished checking the compressed air system, he found 91 leaks.  (You will be surprised with your system if it is not well maintained).

If we look at a very small 1/16” (1.6mm) diameter hole at 80 PSIG (5.5 bar), it will cost you $360 a year per leak (based on 6000 working hours per year).  Thus, 91 leaks at $360/year will equal $32,760 per year.  After the fittings were reworked with piping compound, the compressor was back operating in a normal range.  There was no need to buy a larger air compressor with capital funds, and he was able to save $32,760 a year by finding and fixing the leaks.

As a little secret with the Ultrasonic Leak Detector, it can do more than find compressed air leaks.  Any issue that creates an ultrasonic noise, the Ultrasonic Leak Detector can find it.  This will include air damper seals, circuit breakers, cracked rubber belts, gas burner leaks, refrigerant leaks, worn bearings, and air brake systems on trucks.  It is a handy tool to find potential issues or problems in other areas other than compressed air systems.

For optimization of your compressed air system, it is very important to find and correct leaks in your piping system.  The Ultrasonic Leak Detector can help you do that.  It is an inexpensive way to solve an expensive problem, compressed air leaks.  If you would like to discuss the features and benefits in more detail, you can contact an Application Engineer at EXAIR.  We will be glad to help you.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Six Steps to Optimization, Step 4 – Turn Off Your Compressed Air When Not in Use

Step 4 of the Six Steps To Optimizing Your Compressed Air System is ‘Turn off the compressed air when it isn’t in use.’  Click on the link above for a good summary of the all the steps.

6 Steps from Catalog

Two basic methods to set up a compressed air operation for turning off is the ball valve and the solenoid valve. Of the two, the simplest is the ball valve. It is a quarter turn, manually operated valve that stops the flow of the compressed air when the handle is rotated 90°. It is best for operations where the compressed air is needed for a long duration, and shut off is infrequent, such as at the end of the shift.

manual_valves (2)
Manual Ball Valves, from 1/4 NPT to 1-1/4 NPT

The solenoid valve offers more flexibility. A solenoid valve is an electro-mechanical valve that uses electric current to produce a magnetic field which moves a mechanism to control the flow of air. A solenoid can be wired to simple push button station, for turning the air flow on and off – similar to the manual valve in that relies on a person to remember to turn the air off when not needed.

wa_solvalv
A Wide Array of Solenoid Valve Offerings for Various Flows and Voltage Requirements

Another way to use a solenoid valve is to wire it in conjunction with a PLC or machine control system. Through simple programming, the solenoid can be set to turn on/off whenever certain parameters are met. An example would be to energize the solenoid to supply an air knife when a conveyor is running to blow off parts when they pass under. When the conveyor is stopped, the solenoid would close and the air would stop blowing.

The EXAIR EFC (Electronic Flow Control) is a stand alone solenoid control system. The EFC combines a photoelectric sensor with a timer control that turns the air on and off based on the presence (or lack of presence) of an object in front of the sensor. There are 8 programmable on/off modes for different process requirements. The use of the EFC provides the highest level of compressed air usage control. The air is turned on only when an object is present and turned off when the object has passed by.

efcapp
EFC Used To Control Bin Blow Off Operation

By turning off the air when not needed, whether by a manual ball valve, a solenoid valve integrated into the PLC machine control or the EXAIR EFC, compressed air usage will be minimized and operation costs reduced.

If you have questions about the EFC, solenoid valves, ball valves or any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Many Ways to $ave on Compressed Air Costs

Using compressed air in the plant is common for many types of processes.  Typical uses are drying, cooling, cleaning and conveying. Compressed air does have a cost to consider, and there are many ways to keep the usage and the costs as low as possible.  The first step is to use an EXAIR Intelligent Compressed Air Product, which has been engineered to provide the most performance while using the least amount of compressed air. The next step is to control the use of the air, to only have it on when needed.

EXAIR offers the EFC – Electronic Flow Control.  It offers the most comprehensive method to maximize the efficiency of compressed air usage.  It combines a photoelectric sensor with a timing control that operates a solenoid valve to turn on and off the air as required. With 8 different program types, an on/off mode that works with any process can be programmed ensuring that the minimum amount of compressed air is used.  You can use the online EFC Savings Calculator to see how quickly the savings add up!

EFCp4
EFC – Electronic Flow Control

Another method would be to use a solenoid valve with some other method of control. Depending on the process, the solenoid could be energized via a machine control output, or as simple as an electrical push button station. EXAIR offers solenoid valves in a variety of flow rates (from 40 to 350 SCFM) and voltages (24 VDC, 120 VAC and 240 VAC) to match the air flow requirements of the products we provide, while integrating into the facility and available supply voltages.

For control of the Cabinet Cooler Systems, the ETC – Electronic Temperature Control, uses a thermocouple to measure cabinet temperature and cycle the system on and off to maintain a precise cabinet temperature, and provides a digital readout of the internal temperatures and on the fly adjustment.  Also available is the Thermostat Control models, which utilize an adjustable bimetallic thermostat to control the solenoid valve, also cycling the unit on and off as needed to maintain a set cabinet temperature.

ETC CC
ETC – Electronic Temperature Control

There are several manual methods that can be used to control the compressed air.  A simple valve can be used to turn the air off when not needed, whether at the end of the work day, at break time, or whenever the air isn’t required.  We offer several options, from a foot controlled valve, to a magnetic base with on/off valve, to a simple quarter turn ball valve.

footpedalvalve (2)dualstand (2) manual_valves (2)

 

To discuss your processes and how an EXAIR Intelligent Compressed Air Product can control the air supply and save you money, feel free to contact EXAIR and myself or one of our other Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB

 

 

Combat Rising Energy Costs

It has been a long cold winter this year and I just got my utility bill in the mail. I almost fainted. Sad to say, I’m told that I should expect rising utility costs due to the increased cost of producing electricity.

Rising utility costs has a trickle down effect and no one is exempt. Manufacturers, retailers, farmers, food service, etc. all share the same duress. As the cost to do business increases, prices go up. It’s almost like I’m taking the hit twice.

A recent survey by the U.S. Department of Energy showed that for a typical industrial facility, approximately 10% of the electricity consumed is for generating compressed air. For some facilities, compressed air generation may account for 30% or more of the electricity consumed. Compressed air is an on-site generated utility. Very often, the cost of generation is not known; however, some companies use a value of 18-30 cents per 1,000 cubic feet of air.(ref. DOE)

bog200x181_e7daad

With that being said, EXAIR is your partner in compressed air energy savings. Our products are designed to use less compressed air for blow off, cooling, and non contact motion control. It is as simple as finding the leaks and making the repairs, controlling the air use, and upgrading to efficient engineered blow offs. Request your copy of our blow off guide [link]

Joe Panfalone
Application Engineer
Phone (513) 671-3322
Fax (513) 671-3363
Web: www.exair.com
Twitter: EXAIR_JP

Blogheader_2014

Phantom Power Load

I was reading an interesting article recently by Joe Schwartz of www.homepower.com. (Click here to read) In the article Mr. Schwartz discusses the issue of “standby loss” which is the electricity used by home appliances even when powered off. His point was that while the standby loss of a single item within a modern home is not significant, the cumulative standby loss of all the appliances we find in a home these days can be quite significant. Everything from DVD players to the small cube style transformers suck electricity 24 hours a day, even when the appliance they power is not in use. This is due to the fact that the primary side of the transformer is not switched off when not in use or there is some feature like a digital clock included. So, it keeps using electricity.

As I was reading the article I was able to draw some very clear parallels to a compressed air system. Since one of our main goals at EXAIR is to help customers save on energy costs for their compressed air systems at the point of use, it was quite easy to make comparable references to “phantom loads”, “standby loads” or just plainly put, those loads on a compressed air system which do not actually produce any positive benefit to the user and which make operation of the overall system quite expensive.

If it has not been stated often enough, compressed air is the most expensive utility used in industrial and manufacturing facilities. And, just like electricity, the proper and efficient use of compressed air is often overlooked as a source of tremendous savings for a company. Just read Joe Panfalone’s recent blog about a customer he worked with who made a simple change from open pipe blowing to using EXAIR Nozzles and saving a lot of money in the process. Besides the windfall savings that Joe’s customer experienced, there are lots of little ways in which you can eliminate completely the phantom power load on your air compressor system.

1. Make your own leak analysis – Walking through the plant during down-time when you can actually hear leaks in the system. Or better yet, use a tool such as the Ultrasonic Leak Detector to find the leaks you cannot hear with the un-aided human ear. Note and tag the leaks for repair and you can have an instant savings of up to 30% on your compressed air production.

2. During the leak analysis – Make note of processes where compressed air is flowing through some nozzle or other device even when the operation or machine is not in use. Installing a simple solenoid valve to shut the air flow off when the machine is not in use can be another huge source of savings. Un-controlled release of compressed air like this is just like walking out of your house when you have all the lights turned on, AC unit running, TV turned on and the water running at the sink, all at the same time!  The EXAIR EFC – Electronic Flow Control can even add further control of the air use by timing the air to come on only when absolutely needed in the application.

3. Install energy efficient nozzles – Even in today’s day and age, with all the talk about efficiency in many aspects of life, the end use portion of the compressed air system is overlooked. And so, installing an EXAIR compressed air nozzle engineered for the express purpose of creating force on a target, would be the home energy equivalent of purchasing an Energy star rated appliance for your home.

In conclusion, just as we have many sources of phantom electrical load in our homes, we also have many more sources of phantom compressed air load in our compressed air systems. When rooted out and repaired, can have a significant, cumulative effect on the overall cost to operate the system and improve system capacity to do more productive work for the business.

Neal Raker
Application Engineer
nealraker@exair.com