Not All Compressed Air Guns Are The Same

If you work in an industrial plant or manufacturing environment, chances are you use some type of compressed air gun for cleaning parts, work areas, etc. Many air guns purchased through large industrial suppliers are a common choice due to the cost of the gun but as the saying goes – “you get what you pay for”. These types of guns may be cheap to purchase but they are also made cheap and have parts that can break easily, like the trigger or nozzle. In many cases, the nozzles on these guns are also in violation of OSHA requirements, producing dangerous discharge pressures and loud noise levels, which can lead to costly fines or potentially deadly injuries.

EXAIR offers 5 different styles of Safety Air Guns that not only eliminate these concerns, but also provide a more efficient operation, which can reduce energy costs. All of our Safety Air Guns are fitted with our engineered Air Nozzles  which meet OSHA Standard 1910.242(b) for 30 PSI dead end pressure, as they provide a relief or safe path for the air to exit if the nozzle were to be blocked or pressed against an operator’s body so the exiting air pressure will never reach 30 PSIG. They are also engineered to entrain surrounding air across the profile of the nozzle, which produces a smoother airflow, ultimately reducing wind shear, resulting in much lower sound levels, meeting OSHA Standard 29 CFR 1910.95(a).

 

 

The Precision Safety Air Gun body is made of a durable high impact, glass reinforced nylon, providing for a lightweight, ergonomic operation. These guns feature a curved extension, ideal for delivering a powerful stream of air in hard to reach areas, like clearing debris from drilled holes. All of the nozzles used with these units are either 316ss construction for durable, corrosion resistance or PEEK plastic for non-marring applications. The air inlet is 1/4 FNPT and there is a convenient hanger available for safe storage.

 

 

 

Our NEW VariBlast Compact Safety Air Guns are ideal for light to medium duty processes, featuring a variable flow trigger to achieve different force levels ranging from 2.0 ounces up to 1 pound, depending on the nozzle. The body is cast aluminum and there are (2) 1/4 FNPT air inlets available, 1 on the bottom and 1 on the back of the gun, as well as a storage hanger, for easy installation. Nozzles are available in zinc aluminum alloy, 303ss, 316ss and PEEK plastic. These guns are available with aluminum extensions from 6″ up to 72″.

 

 

The Soft Grip Safety Air Guns are commonly used in long-term use applications as they feature a comfortable grip and long trigger which helps to reduce hand and finger fatigue. The cast aluminum construction is well suited for more rugged environments and again, features a hanger hook. These guns can be fitted with aluminum, stainless steel or PEEK plastic to meet the demands of a variety of applications and are available with 6″ – 72″ aluminum extensions for extra reach or Flexible Stay Set Hoses , allowing the user to aim the airflow to a specific target area. The air inlets for these guns are going to be 1/4 FNPT.

 

 

 

EXAIR’s Heavy Duty Safety Air Guns deliver higher force and flows than other air guns, as these units feature a 3/8 FNPT air inlet, which maximizes the compressed air flow to the engineered Super Air Nozzle. Like the Soft Grip, the durable cast aluminum body is designed for use in tough industrial processes, and the ergonomic and comfortable trigger are ideal for hours of use. Aluminum extension are available, again in lengths from 6″ up to 72″, but feature a larger diameter for optimal flow and superior durability.

 

The Precision, VariBlast, Soft Grip and Heavy Duty Safety Air Guns are ALL available with an optional, polycarbonate Chip Shield to protect personnel from flying chips and debris, further meeting OSHA Standard 1910.242(b) for the safe use of compressed air.

 

Lastly we offer our Super Blast Safety Air Guns. The Super Blast Safety Air Guns are ideal for wide area blowoff, cooling or drying a part, as well as long distances. They feature a comfortable foam grip and spring loaded valve that will shut off the airflow if the gun is dropped. These units use our larger Super Air Nozzles and Super Air Nozzle Clusters, providing forces levels from 3.2 lbs. up to 23 lbs. Depending on which nozzle is fitted on the assembly, air inlets will range from 3/8 FNPT up to 1-1/4 FNPT. Aluminum extensions are available in 36″ or 72″ lengths.

 

 

For help selecting the best product to fit your particular application, please contact one of our application engineers for assistance.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

Out Of This World

One of the best parts about being an Application Engineer at EXAIR is the vast array of applications that customers call in with.  Every time the phone rings, a chat notification pops up, or an email to Techelp comes in, another interesting application presents itself and the process of helping to provide a solution begins.

Recently, I worked with an Optical Scientist working on the next class of giant ground-based telescopes that promises to to revolutionize our view and understanding of the universe.  He made contact with us via chat and said that he had seen a special Safety Air Gun being used to blow off a telescope mirror at a different telescope site.  He said the unit had black plastic nozzles, which was preferred, because they would not scratch or damage the mirror glass. After receiving a photo of the unit, we were able to identify it as the model 1213-4-PEEK, Super Blast Safety Air Gun, with 4 PEEK Nozzles (PEEK  = Polyetheretherketone, a thermoplastic).

1213-4-peek_400w

Model 1213-4-PEEK Super Blast Safety Air Gun

The Super Blast Safety Air Gun is one of the EXAIR  High Force Safety Air Gun offerings that provide a strong blowing force with the added convenience of a comfortable soft grip and easy to operate spring-loaded manual valve that automatically shuts off should it be dropped.  The Super Blast Safety Air gun is ideal for long distance, wide area blowoff, cooling and drying applications.  In the case of the telescope mirror application, the mirrors are outside and subject to dust and bird and bat “deposits.”  After a thorough washing, the Super Blast Safety Air Gun provides the method for drying the mirrors. At 8.4 meters in diameter, a strong, far reaching blast of air is required to ensure complete drying of the mirror surface.

gmt-2015-mirrors1-medium

Array of 7 Mirror Surfaces

EXAIR offers a wide range of Safety Air Guns, from those offering small, precise blowoff of 2 ozs. up to large, strong blowing forces of 23 lbs.  To discuss your special blowoff, cooling or drying application, feel free to contact EXAIR and one our  Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB

 

Image Courtesy of “Giant Magellan Telescope – GMTO Corporation”

A Perfect Fit for Primary Metal Manufacturing

Primary metal manufacturing and processing plants tend to have a variety of applications using compressed air, some of which can be quite large.  Our Finnish distributor found just such an application, using a high volume of compressed air under unsafe conditions.

20151111_122132

Homemade air gun at a metal manufacturing plant in Finland

In the photo above you can see a homemade air gun used to provide a high force blow off.  This unit has a welded cone on the end of a metal pipe using a ¼ turn ball valve to control the compressed air.  When the ball valve is turned the airflow remains constant until the operator returns the valve to the closed position.  This means that if the operator were to let go of the unit for any reason, the air gun would continue to blow, creating a safety hazard.

In addition to this concern, the welded cone at the end of the pipe provides no protection for high dead end pressures, creating a potential source of an air embolism if contacting human skin.  This can lead to difficulty breathing, chest pain, low blood pressure, or even a stroke (Source: MedScape; Venous Air Embolism; Updated December 8th, 2015).

The end user had accepted the risks associated with this homemade device because they were unaware of anything in the market capable of meeting the volume and force necessary to meet their application needs.  That is, until they were shown the EXAIR Super Blast Safety Air Gun model 1218.

Feeding the compressed air through an automatically closing ball valve, the 1218 removed the threat of unwanted flow from such a high force air gun.  The model 1218 also provides more than enough force and flow – the existing setup uses a 1-1/4” diameter orifice with a flow rate of 1986 SCFM (56,233 SLPM) with an unknown entrainment ratio; the 1218 has a flow rate of 460 SCFM (13,026 SLPM) with an entrainment ratio of 25:1, making the total directed flow equal to 11,500 SCFM (325,650 SLPM)!  This means the application can produce better or equal performance at a fraction of the compressed air consumption, thanks to the engineered design of EXAIR nozzles.  (See below for operational cost comparison.)

By converting to an EXAIR Super Blast Safety Air Gun this customer was able to add safety, increase performance, and lower operating costs.  If you have an application you think could benefit from better safety, performance, or operating cost, contact an EXAIR Application Engineer.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

 

Compressed air costs are calculated as follows:

Previous setup:

1,986 SCFM compressed air consumption.  At a cost of $0.25/1000 SCF this equates to:

1,986 * ($0.25/1000) = $0.4965 for every minute of use

EXAIR model 1218:

460 SCFM compressed air consumption.  At the same cost of $0.25/1000 SCF this equates to:

460 * ($0.25/1000) = $0.115 for every minute of use

When comparing the two, the EXAIR model 1218 will provide an operational cost savings of almost 77%!

And, if you’re wondering how we determined the airflow through the existing setup, we used the charts below.

air calcs

Air calcs for the flow through a 1-1/4″ orifice

%d bloggers like this: