Engineered Nozzles Replace Segmented Coolant Hose for Ink Drying Application

flat nozzle loc line comparison
Segmented Hose on the left and an HP1126 1″ Flat Nozzle on the right

A common item that can be found in a majority of machine shops is the blue or gray knuckle-jointed hose used to dispense coolant on lathes and CNC machines. EXAIR also uses this same hose with our Cold Guns and Adjustable Spot Coolers for applications that cannot or do not wish to use liquid coolant as a means of keeping the heat down on their tooling. Since the cold air discharges at atmospheric pressure, this is an acceptable application. Another application is using this style of hose as a compressed air blowoff. This is NOT a proper use of the hose and is not only a considerable waste of compressed air but can also pose a safety hazard. Using this method for compressed air blowoff is not compliant with OSHA 1910.242(b) (a directive we blog about).

I was recently contacted by a customer in Indonesia that was using an array of (6) of these knuckle-jointed hoses with a ¼” round nozzle attachment for a blowoff operation. The customer had a series of rubber pads used in the construction of a toy castle. The pads were brought along by an overhead conveyor and a design was printed on the head of the pad. The nozzles were used to dry the ink before the pad made it to the next part of the process. This was a new product line and the processes involved were being evaluated for potential places to save on compressed air rather than adding overall capacity to their system. After using a variety of EXAIR products for other blowoff applications, they came back for another engineered solution.

After testing both a 1009-9280 (Adjustable Air Nozzle w/ 30” Stay Set Hose) and an HP1126-9280 (1” High Power Flat Nozzle w/ 30” Stay Set Hose), the customer determined that the airflow pattern from the 1” Flat Nozzle was more conducive to drying the rubber pad and purchased the remaining units to replace their original method. The compressed air savings was noticed immediately!!

For the old operation, they had to regulate the pressure down on the hose to 25 psig so that the hose wouldn’t break apart. (1) This hose , with a ¼” round nozzle, will consume 52 scfm at 25 psig of supply pressure. With (6) of these they were consuming a whopping 312 scfm!! Since the HP1126 is compliant with OSHA directive 1910.242(b) and will not break apart at higher pressures, they were able to operate at 80 psig while only consuming 17.5 scfm. They saved more than enough air for their new process and are evaluating whether or not they can turn off one of their smaller 25 HP compressors.

The new setup with the EXAIR engineered solution was able to save them 207 scfm of compressed air. Assuming a cost of $.25/1000 scfm and a 40 hr work week, this translates to an overall savings of $6,458.40 per year off of their utility bill.

207 scfm x 60 minutes x 8 hrs/day x 5 shifts/week x 52 weeks/year =25,833,600 scf

25,833,600 scf x ($.25/1000 scf) = $6,458.40

If you’re using an inefficient compressed air blowoff in your facility, give us a call. An Application Engineer will be happy to evaluate your process and determine the safest and most efficient solution. With same day shipment for stock items on orders placed by 3:00 pm EDT, we can get a solution out to you by the following day!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

How to Meet the OSHA Compressed Air Standard

Every day we talk to customers who need to comply with OSHA regulations for using compressed air to clean up their shop or product. Back in 1972 on Valentine’s Day, OSHA published Directive Number STD01-13-001 standard 1910.242(b), which strives to provide guidance on how manufacturers can safely use compressed air for cleaning purposes to comply with the Walsh-Healey Act of 1936.  This directive laid out acceptable methods for complying with 41CFR 50-204.8 and 29 CFR 1910.242(b)

The two methods are very simple, but still many people have questions.  The first method (pictured below) is to regulate the line pressure from the compressor to below 30 PSIG.

Regulator Method

Figure 1 Regulator method Photo Courtesy of osha.gov

The second method is to install a nozzle engineered to reduce the static pressure of the nozzle to less than 30 PSIG.

OSHA Nozzle Method

Figure 2 Nozzle method Photo Courtesy of osha.gov

The first method reduces the danger by limiting the energy in the system to less than an amount which can injure a person.  OSHA determined that 30 PSIG was the safe limit for the amount of pressure the human body could withstand without causing severe injury. The problem with this method is that cleaning with compressed air at 30 psig is virtually impossible.  Which means at such a low pressure the operator must pass the nozzle so close to the chips and debris, he might as well use a broom or pick each piece of debris up with his fingers. This first method I will label the regulator method. The second method introduces a relief valve at the nozzle, so that an operator cannot block off all of the openings of the nozzle, and build up any static pressure on their skin. I will call this the nozzle method.

Commonly and cheaply, the nozzle method is done by cross drilling a hole in an open pipe.  This is a sometimes effective method for protecting employees from static pressure, but it also is great at producing a tremendous amount of noise and wasting a lot of compressed air every year. The noise produced by even a ¼ pipe with a cross drilled hole fed with 80 PSIG can easily exceed 90 dBA and consume up to 140 SCFM. The noise can be even louder, if there are burrs or rough edges from drilling out the pipe.  This is also a violation of OSHA standard 29 CFR – 1910.95 (a), if the employee is not using hearing protection.

Air Nozzle work

To meet this OSHA standard, EXAIR’s solution is to engineer features which cannot be dead-ended into a wide variety of compressed air products. We do this a variety of ways depending on the product.  For the Super Air Nozzles, we utilize multiple small orifices which are protected by raised fins.  The multiple orifices offer an escape path for the air in case a single orifice is plugged. The fins protect the orifices so that no one person can block more than one orifice at a time.

So if you are worried about an OSHA inspector knocking on your door, or maybe you aren’t sure if you should be worried, contact us.  The Application Engineering team here will help you determine what engineered solution you need to keep those pesky fines away.

Dave Woerner
Application Engineer
Davewoerner@EXAIR.com
@EXAIR_DW

EXAIR Leads the Way with Product Standards

Standards seem to continually get introduced and updated. There is an ever increasing number of local, regional, federal, and even global standards to comply with.  We pay close attention to these standards and have the largest number of standards upon our products.

meets or exceeds oshaThe standards the every EXAIR product meets or exceeds are the OSHA standards for dead-end pressure as well as allowable noise level exposure.  The dead-end pressure directive is OSHA standard 29 CFR 1910.242 (b).  The standard refers to the fact that compressed air can be dangerous when the outlet pressure of a hole, hose or copper tube is higher than 30 psig (2 BAR).  In the event the opening is blocked by a hand or other body part, air may enter the bloodstream through the skin, resulting in a serious injury.  All of the compressed air products manufactured by EXAIR have been designed for safety.  All are safe to be supplied with higher pressure than 30 psig and still meet or exceed the OSHA standard.

The OSHA standard 29 CFR – 191.95 (a) refers to the maximum allowable noise exposure that an operator is permitted to be exposed to for a given period of time.   The chart of allowable exposure times is shown below.   All EXAIR products are engineered to create the minimum amount of noise while efficiently utilizing compressed air.   Many times blow offs are cross drilled to permit air to escape in order to meet the OSHA standard for dead end pressure, this process increases the noise level generated by that blow off considerably.

OSHA Noise Level

One of the most stringent compliance that EXAIR has upon its products is the UL/CUL listings and recognition.  All EXAIR Cabinet Cooler Systems are UL listed, we were the first to insure your electrical cabinet’s NEMA integrity remained by putting our Cabinet Cooler systems to the UL test. This means that the Underwriters Laboratories have deemed these products safe for operation throughout the US and Canada per their standards that are applicable for each of the product groups.   The products undergo numerous tests and scenarios to ensure that an operator will be safe during the normal operation of the units.   The tests for the Cabinet Cooler Systems includes environmental exposure for the given NEMA type of the enclosure along with many other tests.  The Static Eliminator Power Supplies are also UL listed.

cULlistedcULrecognized

CE is another standard which EXAIR pays great attention to to meet or exceed. CE is a standard that is normally preferred when dealing with countries outside of the US but is gaining popularity within the states as well.  CE being a European standard actually stands for a french phrase, “Confrmité Eurpéene” which is translated to “European Conformity”.  Any EXAIR product displaying the CE mark conforms where there are applicable directives.CE

The RoHS directive is targeted on heavy metals that are generally found within electronics.  Substances like Mercury, Lead, Polybrominated biphenyls, Cadmium, or Hexavalent chromium.  In order to meet the RoHs directive a product must have 100 parts per million or less of mercury and for other substances there must be less than 0.01% of the substance by weight in a raw homogeneous materials level. All EXAIR products which are electronic or contain electronic devices are compliant to the 2002/95/EC RoHS directive, also including the amendment outlined in the European Commission decision L 214/65.  This includes all EXAIR Static Eliminators, Electronic Flow Control, and Electronic Temperature Control products.ROHS_Vector

EXAIR maintains records to be sure our supply chain is providing product which meets the conflict mineral free guidelines of the Dodd-Frank Act.  EXAIR supports Section 1502 of the Dodd-Frank Wall Street Reform and Consumer Protection Act and we are committed to compliance with the conflict minerals rule in order to curb the illicit trade of tin, tantalum, tungsten and gold in the DRC region. EXAIR is using the CMRT 3.02 template to document our supply chain and commitment to conflict free products. When requested we will even provide the needed forms to support our customer’s efforts in complying with the Dodd-Frank Act.

conflictfree

REACH, is another European Community Regulation this time on chemicals and their safe use.  REACH is targeted to ensure personnel and environmental health by identifying the intrinsic properties of chemical substances easily.  REACH stands for Registration, Evaluation, Authorization and Restriction of Chemical substances and was written into law in 2007. EXAIR products are not required to be registered per Title II, Article 7, paragraph 1  of the legislation since they do not contain substances that are intentionally released.   This is to ensure compliance with Regulation (EC) No 1907/2006 Title I, Article 3, paragraph 3, the European Union requires registration of chemicals and substances imported into the EU to ensure a high level of protection of human health and environment.

Reach

 

To conclude, when there is a safety audit, safe sourcing directive or some other form of standard/conformance that you need to meet, consider EXAIR compressed air products. Please contact us to find out if we can help you meet or exceed those standards.

Brian Farno
Application Engineer Manager
BrianFarno@EXAIR.com
@EXAIR_BF

Making Safety A Priority

Everyone has heard the term “idiot-proof,” and most of us know what a misnomer it is. No matter how hard we try to ensure that nothing can go wrong with a plan, there’s always going to be that possibility. And when it does, it’s frequently going to be traceable back to human error. Of course, material failures happen, and they can be darn near impossible to predict…anyone who’s ever owned an automobile for any length of time surely knows this.

Sometimes, not keeping up with regular maintenance is to blame...
Sometimes, not keeping up with regular maintenance is to blame…
...but, it can happen to anyone, it seems.
…but, it can happen to anyone, it seems.

In the Navy, we had another term, which, curiously, none of us ever regarded as derogatory: “sailor-proof.” It, of course, meant the same thing, and its use always provoked the same warning about how difficult it was to achieve. Of course, our training, attention to detail, and self-preservation instincts ensured a pretty good track record, as far as safety goes.

I was thinking about all this when I saw, in recent news, that a British submarine shipyard had trapped two workers inside a ballast tank by accident. When banging on the hull with a tool didn’t attract anyone’s attention, one of them was able to find a spot, near the top of the tank, where his cell phone got reception and was able to call for help.

At EXAIR, we’re dedicated to safety. Not only in providing Intelligent Compressed Air Products that comply with OSHA standards in regard to use for cleaning (1910.242(b)) – and noise levels (1910.95(a)), but also in the way we do business here. We have regular “all hands” training on subjects such as hazard communication & forklift safety. We’ve got ready access to Safety Data Sheets on any product used in the shop. Clear and visible signs indicate where personal protective gear (i.e. safety glasses, ear plugs, etc.) are required. Fork lift paths are clearly defined, and nobody operates one without current and specific certification. I’ve said it before and I’m proud to say it again: Getting hurt on the job is the last thing someone has to worry about here, because safety is the first thing everybody is thinking about.

Is your company paying that kind of attention to safety? If you use compressed air products for cleaning, blow off, cooling, etc., we’ll be happy to discuss that aspect with you, just to make sure. Give us a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

 

 

Aston Martin Vantage S broken down image courtesy Paul Townsend. Creative Commons License.

busted image courtesy Jenny oh. Creative Commons License.

A (Sample) Lexicon For Compressed Air

Every industry and different technical subject matter comes with it’s own lexicon of terms or vocabulary words.  More often than not, when speaking to an Application Engineer here at EXAIR you are going to hear words within our lexicon. The list I have compiled below is merely a sampling to help translate some terms that we forget not everyone knows.  Some of these are merely acronyms that get thrown around a good amount.

SCFM – Standard Cubic Feet per Minute – This is the unit we use to represent the volumetric flow rate of compressed gas that has already been corrected to standardized conditions of pressure and temperature.

PSIG – Pounds per square inch gauge – This is the unit which we use to represent the operating inlet pressure of the device.  When requesting this, we generally are looking for a pressure gauge to be installed directly on the inlet to the device with no other form of restrictions between the two.  For the most part, catalog consumption values are given in SCFM at 80 psig.  The main exception to that rule are the Vortex Tube based products.

Compressed Air – This is a utility that most industrial manufacturing facilities have available to them.   It is regular, atmospheric air which has been compressed by an air compressor to a higher pressure than atmospheric.  Generally speaking, compressed air systems will be at a range of 85-120 psig.

OSHA – Occupational Safety and Health Administration – This is the main federal agency that enforces two of the major conformance standards that EXAIR products meet or exceed.

29 CFR- 1910.95 (a) – Maximum allowable noise level exposure.  The great majority of EXAIR products meet or exceed this safety standard, our largest Super Air Nozzles
1910.242 (b) – This is the standard which states compressed air blow off devices cannot exceed 30 psig of dead end pressure.  This means, if the exit point of the air can be blocked the operating pressure must be below 30 psig.  The reason for this standard is to prevent air embolism which can be fatal.  All EXAIR products meet or exceed this standard by having multiple orifice discharge.

Coanda Effect – This is the effect that numerous EXAIR products utilize to amplify and entrain ambient air.   The Coanda effect is when a fluid jet (stream of compressed air) tends to be attracted to a nearby surface.  This principle was found by a Romanian aerodynamics pioneer, Henri Coandᾰ.  The picture below shows a Super Air Amplifier blowing a foam ball into the air and suspending it due to the Coanda effect on the surface of the ball.

A Super Air Amplifier's air stream causes a foam ball to be suspended in mid air thanks to the Coandᾰ effect.
A Super Air Amplifier’s air stream causes a foam ball to be suspended in mid air thanks to the Coandᾰ effect.

Rigid Pipe or Hard Pipe – This is the term we will often use when discussing the compressed air line that can be used to support and supply certain EXAIR products.  Generally we are referring to a Schedule 40 steel pipe, Type L copper line, stainless steel tube, or any form of pressure rated hard pipe that can be used for supplying compressed air.

Plenum – the state or a space in which a gas, usually air, is contained at pressure greater than atmospheric pressure. Many of our products feature a plenum chamber. 

Again, this list is only a sample of the terminology you will hear us use when discussing compressed air applications.  If there are any other air/compressed air/fluid dynamic terms you may be unsure of, please contact us.

Brian Farno
Application Engineer Manager
BrianFarno@EXAIR.com
@EXAIR_BF

Safety Air Gun Improves Aluminum Extruding Machining Process

I was doing some work around the house Saturday when I heard my wife shouting out from our laundry room….”Something is wrong with our dryer. This is the 3rd time I’ve restarted it and the clothes are still wet!”. Now having been in this situation before, I knew this meant that the exhaust was probably clogged with lint (again).

See, our laundry room runs parallel to our family room and the exhaust ducting goes up and then across the laundry room, across the family room and then exhausts on the side of the house. (I would like to find the person who thought this was a good idea!). I have thought about re-routing the ducting but the only other option would be to have the exhaust on the front of the house which will “never happen” (per my wife). So I usually end up taking my vacuum and attaching as many extensions as possible to reach as much of the ducting as I can. I have tried a few other methods with no success – like taking my leaf blower and, from the outside of the house, blow the lint back towards the laundry room and into a garbage can. (hint: make SURE your wife is not in the laundry room when attempting this…. They don’t react too well when they get covered in lint!)

This made me think of an application I worked on last week with an aluminum extrusion company. The customer cuts lengths of aluminum siding from 1’ up to 10’ in length and, standing at one end of the material, are using a standard blow gun to try and blow out the chips but are unsuccessful. They reviewed our website but were still unsure what product may fit their needs best, so they gave us a call.

We discussed their application and the customer was able to email pictures. After reviewing the pictures I recommended using one of our Soft Grip Safety Air Guns with our Model # HP1125, 2” Flat High Power Super Air Nozzle and a 72” extension.  The Soft Grip Safety Air Gun is constructed of cast aluminum and includes a hook for hanging in a convenient location. The Model # HP1125, 2” High Power Flat Super Air Nozzle, produces 2.2 lbs. of force @ 80 PSIG and utilizes 37 SCFM with a sound level of 83 dBA. This would also meet or exceed the OSHA standards for safety, per Standard 1910.242(b) for 30 psi dead end pressure, and allowable noise exposure per Standard 29 CFR – 1910.95(a).

HP1230
An EXAIR model HP1230 Soft Grip Safety Air Gun

To discuss your application or help with selecting the right product, contact an application engineer.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

Dead End Pressure

With all the warm weather and outdoor activities around the house the past few weeks I had somewhat forgotten about a nice wasp nest that had been constructed in between the front door to our house and my bedroom window.  This also happens to be right in the corner of two walls and in the deepest portion of the landscaping.   Like I said though, I had forgotten about it for a few weeks which gave the inhabitants enough time to double the size of the nest.

20140616_205441

With that being said, I didn’t want to use wasp or bee spray because it means I would have to get close to the nest and I have a strong belief that all of those products just make them really angry and don’t bring death right away.  I wanted the nest to have a quick death because then I don’t have to run around my yard, screaming, because I have a wasp chasing me after destroying their home.

I cam up with several methods to get rid of the nest.

1.) Brake Cleaner – Very effective, however the nest was also right above our air conditioning condenser so that was out.

2.) Small controlled burn – In my experience it is never small nor controlled.   Plus it was way to close to the dry roofline.

3.) 3,000 psi of water in a jet stream from the pressure washer.  WINNER!!!!

20140616_205457

So I set out to the front of the house with the pressure washer and hose in tow.  Get everything setup and notice that there is one sentry wasp sitting right at the entrance.  So I simply got the nozzle of the gun with pin point spray as close as I could and as soon as the wasp started to move I shot the entire nest off the house.   Then I proceeded to shoot it back and forth in the landscaping until I saw no survivors.

That was 3,000 psi of water that tore through a nest and rid my house of a pest.  This made me think of just how little pressure the human skin can take.  OSHA standard CFR 1910.242(b) guards against a mere 30 PSIG. Higher pressure air, when blocked up against our skin, has the potential to push air into our bloodstream and cause air embolism – a serious threat to our health. Too many commercial air nozzles and guns, open pipes and homemade blow off violate this OSHA standard and pose a threat to personnel.

EXAIR engineered air nozzles and products have been designed to eliminate the possibility of being dead-ended (blocked). This is why all of EXAIR’s products meet or exceed the OSHA standard 1910.242(b) for 30 psi dead-end pressure.  None of our products can be dead ended and cause bodily harm when used properly.  These engineered features also reduce noise levels and minimize air consumption. So if you are concerned with any of your compressed air applications, and just how safe they are, contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF