Compressed Air Efficiency Results in Better Business!

Time and time again we write about how compressed air is considered the fourth utility in a manufacturing setting. Compressed air is a great resource to use, however it needs to be used responsibly!

How you use it in your business is important, for a couple of key considerations:

The Cost of Compressed Air

Compressed air isn’t free.  Heck, it isn’t even cheap.  According to a Tip Sheet on the U.S. Department of Energy’s website, some companies estimate the cost of generation at $0.18 – $0.30 per 1,000 cubic feet of air.  A typical industrial air compressor will make 4-5 Standard Cubic Feet per Minute per horsepower.  Let’s be generous and assume that our 100HP compressor puts out 500 SCFM and is fully loaded 85% of the time over two shifts per day, five days a week:

500 SCFM X $0.18/1,000 SCF X 60 min/hr X 16 hr/day X 5 days/week X 52 weeks/year =

$22,464.00 estimated annual compressed air cost

So to minimize the compressed air use and the over all generation costs there are six easy steps to follow!

  1. Measure: the air consumption You must create a baseline to understand your demand requirements. How can you measure your improvements if you do not understand your total demand or baseline? Installing an EXAIR Flow Meter to your main air lines will help identify the amount of compressed air demand you have and help identify areas of concern.
  2. Find and fix leaks in the system: The repair of compressed air leaks is one of easiest ways to gain energy savings. In most cases all you need is a keen sense of hearing to locate a leak. Once a you have confirmed a leak then the make the necessary repairs. Harder to find leaks may require tools such as EXAIR’s Ultrasonic Leak Detector. This is a hand held high quality instrument that can be used to locate costly air leaks.
  3. Upgrade your blow off, cooling and drying operations: Updating your compressed air process tooling can save you energy and help you comply with OSHA noise and safety regulations. An example would be to replace old blow off or open pipe systems with EXAIR Safety Air Nozzles. Replacing open copper tubes or pipes can amount up to 80% air savings. You achieve lower sound levels and significant energy savings.
  4. Turn off the compressed air when it isn’t in use: It sounds obvious but how many times has an operator left for a break or lunch and doesn’t shut off the compressed air for his/her station? The minutes add up to a significant amount of time annually meaning there is opportunity for energy savings. The use of solenoid valves will help but EXAIR’s Electronic Flow Control (EFC) will dramatically reduce compressed air costs with the use of a photoelectric sensor and timing control.
  5. Use intermediate storage of compressed air near the point of use: The use of storage receivers can improve your overall system efficiency in a number of ways. For example, using a main air receiver at the compressor room can make load/unload compressor control more efficient. Localizing receiver tanks such as EXAIR’s 9500-60 sixty gallon receiver tank by the point of use for a high demand process will stabilize the demand fluctuations allowing a more fluid operation.
  6. Control the air pressure at the point of use to minimize air consumption: The use of pressure regulators will resolve this issue. Using regulators you can control the amount of air being processed at each point of use. EXAIR offers different sized pressure regulators depending upon your air line and process requirements. Regulating the compressed air to the minimum amount required and will reduce your overall demand resulting in annual savings and a payback schedule.

Health & Safety

Injuries and illnesses can be big expenses for business as well. Inefficient use of compressed air can be downright unsafe.  Open ended blow offs present serious hazards, if dead-ended…the pressurized (energized) flow can break the skin and cause a deadly air embolism.  Even some air nozzles that can’t be dead ended (see examples of cross-drilled nozzles on right) cause a different safety hazard, hearing loss due to noise exposure.  This is another case where EXAIR can help.  Not only are our Intelligent Compressed Air Products fully OSHA compliant in regard to dead end pressure, their efficient design also makes them much quieter than other devices.

Efficient use of compressed air can make a big difference in the workplace – not only to your financial bottom line, but to everyone’s safety, health, and livelihood.  If you’d like to find out more about how EXAIR can help, give me a call.

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Business Benefits From Compressed Air Efficiency

Use of compressed air, or “the fourth utility” as it’s called, is widespread in many industries.  How you use it in your business is important, for a couple of key considerations:

Monetary cost

Compressed air isn’t free.  Heck, it isn’t even cheap.  According to a Tip Sheet on the U.S. Department of Energy’s website, some companies estimate the cost of generation at $0.18 – $0.30 per 1,000 cubic feet of air.  A typical industrial air compressor will make 4-5 Standard Cubic Feet per Minute per horsepower.  Let’s be generous and assume that our 100HP compressor puts out 500 SCFM and is fully loaded 85% of the time over two shifts per day, five days a week:

500 SCFM X $0.18/1,000 SCF X 60 min/hr X 16 hr/day X 5 days/week X 52 weeks/year =

$22,464.00 estimated annual compressed air cost

If you want to go jot down some numbers from your compressor’s nameplate and your last electric bill, you can accurately calculate your actual cost.  Here’s the formula:

Taking our same 100HP compressor (105 bhp required,) fully loaded 85% of the time, and assuming the motor’s good (95% efficient):

(105 bhp X 0.746 X 4,160 hours X $0.08/kWh X 0.85 X 1.0)÷ 0.95 =

$23,324.20 actual annual compressed air cost

So, our estimate was within 4% of our actual…but the point is, $22,000 to $23,000 is a significant amount of money, which deserves to be spent as wisely as possible, and that means using your compressed air efficiently.  Engineered solutions like EXAIR Intelligent Compressed Air Products can be a major part of this – look through our Case Studies; implementing our products have saved companies as much as 60% on their compressed air costs.

Health & Safety

Injuries and illnesses can be big expenses for business as well. Inefficient use of compressed air can be downright unsafe.  Open ended blow offs present serious hazards, if dead-ended…the pressurized (energized) flow can break the skin and cause a deadly air embolism.  Even some air nozzles that can’t be dead ended (see examples of cross-drilled nozzles on right) cause a different safety hazard, hearing loss due to noise exposure.  This is another case where EXAIR can help.  Not only are our Intelligent Compressed Air Products fully OSHA compliant in regard to dead end pressure, their efficient design also makes them much quieter than other devices.

Efficient use of compressed air can make a big difference in the workplace – not only to your financial bottom line, but to everyone’s safety, health, and livelihood.  If you’d like to find out more about how EXAIR can help, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Lower Operating Costs by Minimizing Compressed Air Leaks

Almost every industry uses compressed air in some capacity. It is often referred to as the “fourth utility” In an industrial setting, next to water, gas and electric. and in many cases, is the largest energy user in the plant. With an average cost of $ 0.25 per every 1000 Standard Cubic Feet used, compressed air can be expensive to produce so it is very important to use this utility as efficiently as possible. When evaluating the performance of a compressed air system, it’s important to look at the system as a whole.

When you operate point-of-use devices at a higher pressure than necessary to perform a certain job or function, you are creating “artificial demand”. This results in excess air volume being consumed, increasing the amount of energy being lost to waste. For example, plant personnel or operators increase the supply pressure in an effort to improve the end use devices performance. When there is a leak in the system, the line pressure will actually begin to drop and performance begins to deteriorate in other areas in the plant. This not only puts stress on the existing compressor but it also leads to the false idea that a larger or secondary compressor is needed.

Here’s a quick reference on how operating pressure can directly affect operating cost:


Our Model # 1101 Super Air Nozzle requires 14 SCFM @ 80 PSIG. Based on the average operating cost of $ 0.25 per 1000 SCF used, it would cost $ 0.21 per hour to operate this nozzle. (14 SCFM x $ 0.25 x 60 minutes / 1000 SCF = $ 0.21)

If you were able to use the same Model # 1101 Super Air Nozzle operating at only 40 PSIG, while still achieving the desired end result, the air demand would decrease to only 8.1 SCFM, reducing the hourly cost to $ 0.12.  (8.1 SCFM x $ 0.25 x 60 minute / 1000 SCF = $ 0.12)

Don’t waste your money

Leaks in a compressed air system can account for up to 30% of the total operational cost of the compressor, wasting thousands of dollars of electricity per year. Some of the more common places for a leak to occur would be at connection points such as valves, unions, couplings, fittings, etc.

In this table, you will see that a certain amount of air volume is lost through an orifice or opening. If you have several leaks throughout your facility, it isn’t gong to take long for the waste and high operating costs to quickly add up as well as potential increases in repair or maintenance costs for the existing compressor. The industry average shows that any leakage more than 10%, shows there are areas where operational improvements could be made in a compressed air system.

Stay tuned to our blog over the next few weeks as we will discuss how following a few simple steps can help optimize your current compressed air system, in many cases, reducing energy costs related to compressed air waste, leading to a more economical operation.

In the meantime, if you have any questions or would like to discuss a particular application or EXAIR product, give me a call at 800-903-9247.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

 

 

 

Super Air Knife Saves Money Compared to Drilled Pipe

A few months ago, my counterpart Brian Bergmann wrote a blog providing a detailed explanation of ROI or Return on Investment. Today, I would like to take this information and apply it to a common situation we deal with regularly here at EXAIR – replacing drilled pipe with our Super Air Knife.

Drilled pipe – easy to make but extremely wasteful

Sections of pipe with drilled holes across the length are very common as they are made of relatively inexpensive materials and simple to make.  Where the cost begins to add up is on the operation side as these types of homemade blowoffs waste a ton of compressed air, making them expensive to operate.

For comparison, lets look at a 12″ section of pipe with (23) 1/16″ diameter drilled holes. According to the chart below, each hole will flow 3.8 SCFM @ 80 PSIG for a total of 87.4 SCFM.

With an average cost of $ 0.25 per every 1,000 SCF used (based on $ 0.08/kWh), it would cost $ 1.31 to operate this blowoff for 1 hour. (87.4 SCFM x 60 minutes x $ 0.25 / 1,000)

Super Air Knife – Available from 3″ up to 108″ in aluminum, 303ss and 316ss

Now let’s take a look at replacing the drilled pipe with our 12″ Super Air Knife. A 12″ Super Air Knife will consume 34.8 SCFM (2.9 SCFM per inch) when operated at 80 PSIG. Using the same figure of $ 0.25 per every 1,000 SCF used, it would cost $ 0.52 / hr. to operate this knife. (34.8 SCFM x 60 minutes x $ 0.25 / 1,000)

Now that we know the operating costs, we can make a better comparison between the 2 products.

Drilled pipe operating costs:
$ 1.31 per hour
$ 10.48 per day (8 hours)

12″ Super Air Knife costs:
$ 0.52 per hour
$ 4.16 per day (8 hours)

Cost Savings:
$ 10.48 per day (drilled pipe) –  $ 4.16 per day (Super Air Knife) = $ 6.32 savings per day

A 12″ aluminum Super Air Knife carries a LIST price of $ 297.00. If we take $ 297.00 divided by $ 6.32 (saving per day), we get a ROI of only 47 days.

As you can see, it is quite beneficial to consider ALL of the parameters when looking at a process or application, rather than just the “upfront” details. What seems like a simple and easy fix, can actually be quite  wasteful when it comes to the true cost of ownership.

If you are using similar devices in your plant and would like to see how an EXAIR Intelligent Compressed Air Product can help make the process operate more efficiently, contact an application engineer for assistance.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN