EXAIR’s Industry Leading Super Air Knife Saves You Money

One common application that we get calls for each and every day centers around maximizing compressed air efficiency. I recently got to work with a customer who was using an inefficient blowoff method and was looking to replace it with an engineered compressed air solution. They had a total of (8) extrusion lines, each with (3) modular-hose style flat nozzles installed. Before a cooling bath they had one nozzle remove some of the heat, then as the extruded material exits the water bath another (2) nozzles blowoff any residual water. They were maxing out their compressor’s peak operating capacity and pressure drops across the system were causing problems elsewhere in other processes.


They were operating each of the flat nozzles at 50 psi using a total of 17 SCFM per nozzle. We first calculated how much air the current method was using. The extrusion lines were run for one full 8-hr shift per day:

17 SCFM/nozzle x 3 nozzles/line = 51 SCFM per extrusion line

51 SCFM x 60 mins x 8hrs x 5 days x 50 weeks = 6,126,000 SCF

The extrusion lines accommodated product that ranged from 1”-2.5” wide. They wanted one single solution to use across all different products. We settled on (3) of our 110003 3” Super Air Knives. Let’s take a look at the compressed air requirement for (3) 110003 Super Air Knives, also operated at 50 psig.

A Super Air Knife will consume 1.9 SCFM/inch when operated at 50 psig:

1.9 SCFM/inch x 3 inches (per knife) = 5.7 SCFM/knife

5.7 SCFM x (3) total knives = 17.1 SCFM

17.1 SCFM x 60 mins x 8hrs x 5 days x 50 weeks = 2,052,000 SCF

Total savings per extrusion line – 6,126,000 SCF – 2,052,000 SCF = 4,074,000 SCF

4,074,000 SCF x 8 extrusion lines = 32,592,000 SCF

By replacing the (3) inefficient nozzles with EXAIR’s Super Air Knives, a whopping 4,074,000 SCF of compressed air is saved each year. With (8) total lines, this equates to a total of 32,592,000 SCF of compressed air. Most companies will know the cost of their compressed air usage per CFM, but a cost of ($0.25/1000 standard cubic feet) is a good baseline to use.

($.25/1000 SCF) x 32,592,000 SCF = $8,148.00 USD

By replacing (3) inefficient nozzles across all (8) extrusion lines with EXAIR’s industry leading Super Air Knife, they were able to save a total of $8,148.00 per year. In as little as (6) months, the Super Air Knives will have already paid for themselves!!

If you’ve been maxing out your compressed air system, don’t necessarily assume you need to increase your overall capacity. Put in a call to an EXAIR Application Engineer and we can take a closer look at the ways your using your compressed air throughout the facility. By replacing some inefficient methods with an engineered solution, we can help you save air and money!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Lower Operating Costs by Minimizing Compressed Air Leaks

Almost every industry uses compressed air in some capacity. It is often referred to as the “fourth utility” In an industrial setting, next to water, gas and electric. and in many cases, is the largest energy user in the plant. With an average cost of $ 0.25 per every 1000 Standard Cubic Feet used, compressed air can be expensive to produce so it is very important to use this utility as efficiently as possible. When evaluating the performance of a compressed air system, it’s important to look at the system as a whole.

When you operate point-of-use devices at a higher pressure than necessary to perform a certain job or function, you are creating “artificial demand”. This results in excess air volume being consumed, increasing the amount of energy being lost to waste. For example, plant personnel or operators increase the supply pressure in an effort to improve the end use devices performance. When there is a leak in the system, the line pressure will actually begin to drop and performance begins to deteriorate in other areas in the plant. This not only puts stress on the existing compressor but it also leads to the false idea that a larger or secondary compressor is needed.

Here’s a quick reference on how operating pressure can directly affect operating cost:

Our Model # 1101 Super Air Nozzle requires 14 SCFM @ 80 PSIG. Based on the average operating cost of $ 0.25 per 1000 SCF used, it would cost $ 0.21 per hour to operate this nozzle. (14 SCFM x $ 0.25 x 60 minutes / 1000 SCF = $ 0.21)

If you were able to use the same Model # 1101 Super Air Nozzle operating at only 40 PSIG, while still achieving the desired end result, the air demand would decrease to only 8.1 SCFM, reducing the hourly cost to $ 0.12.  (8.1 SCFM x $ 0.25 x 60 minute / 1000 SCF = $ 0.12)

Don’t waste your money

Leaks in a compressed air system can account for up to 30% of the total operational cost of the compressor, wasting thousands of dollars of electricity per year. Some of the more common places for a leak to occur would be at connection points such as valves, unions, couplings, fittings, etc.

In this table, you will see that a certain amount of air volume is lost through an orifice or opening. If you have several leaks throughout your facility, it isn’t gong to take long for the waste and high operating costs to quickly add up as well as potential increases in repair or maintenance costs for the existing compressor. The industry average shows that any leakage more than 10%, shows there are areas where operational improvements could be made in a compressed air system.

Stay tuned to our blog over the next few weeks as we will discuss how following a few simple steps can help optimize your current compressed air system, in many cases, reducing energy costs related to compressed air waste, leading to a more economical operation.

In the meantime, if you have any questions or would like to discuss a particular application or EXAIR product, give me a call at 800-903-9247.

Justin Nicholl
Application Engineer





An Overview of EXAIR’s Award Winning Super Air Knife


Loud and inefficient homemade blowoff

Drilled pipes, like the one shown above, are all too common in industrial settings for processes where a wide surface area needs to be treated. Their popularity can be attributed to how cheap and easy they are to make but in actuality they are very expensive to operate, as they waste large amounts of compressed air, and are very dangerous to operate.

We frequently take calls from customers looking for a more energy efficient, safer solution to replace these types of blowoffs. EXAIR manufactures 3 different styles of Air Knife – the Super, Standard and Full-Flow – that are the ideal solution for wide coverage applications. Today, I would like to provide an overview of our award wining Super Air Knife.

The Super Air Knife

The Super Air Knife is our most efficient air knife in regards to compressed air usage, using only 2.9 SCFM per inch of knife length @ 80 PSIG. It is also the quietest on the market today at only 69 decibels. The Super Air Knife provides the highest air velocity of the 3 styles offered by EXAIR and produces 2.5 ounces of force per inch at 80 PSIG operating pressure. We offer stock lengths from 3” up to 108” in single piece construction with available materials of aluminum, 303ss and 316ss. We also offer PVDF (Polyvinylidene Fluoride) up to 54” for harsh environments.

The Super Air Knife provides a laminar airflow across the entire length with hard-hitting force. They also give a 40:1 amplification rate meaning they entrain 40 parts of the surrounding room air for every 1 part of compressed air used, producing a large volume outlet flow.

Coupling Kit for the Super Air Knives

For applications requiring an air knife length longer than 108″, we offer a coupling bracket kit that allows you to connect two Super Air Knives together for a seamless, uninterrupted flow. Kits are available in aluminum, 303ss or 316ss to match the construction of the knife.

In addition, we also offer plumbing kits as an accessory item. For aluminum Super Air Knives, we offer cut to length nitrile/PVC hose and brass fittings and for stainless steel and PVDF knives we offer 316ss cut-t0-length pipe and fittings.

If you have any questions on how the Super Air Knife might fit into your process, please contact an Application Engineer.

Justin Nicholl
Application Engineer

FREE EXAIR Webinar – November 2nd, 2017 @ 2:00 PM EDT

On November 2, 2017 at 2 PM EDT, EXAIR Corporation will be hosting a FREE webinar titled “Optimizing Your Compressed Air System In 6 Simple Steps”.

During this short presentation, we will explain the average cost of compressed air and why it’s important to evaluate the current system. Compressed air can be expensive to produce and in many cases the compressor is the largest energy user in a plant, accounting for up to 1/3 of the total energy operating costs. In industrial settings, compressed air is often referred to as a “fourth utility” next to water, gas and electric.

Next we will show how artificial demand, through operating pressure and leaks, can account for roughly 30% of the air being lost in a system, negatively affecting a company’s bottom line. We will provide examples on how to estimate the amount of leakage in a system and ways to track the demand from point-of-use devices, to help identify areas where improvements can be made.

To close, we will demonstrate how following six simple steps can save you money by reducing compressed air use, increasing safety and making your process more efficient.


Justin Nicholl
Application Engineer