Business Benefits Of Compressed Air Efficiency

The primary business benefits of an efficient air compressor system are reduced operational costs, reduced maintenance and increased up-time.  With that being said, is your compressed air system costing you more than you think it should?  Are you having failures, pressure drops, inadequate volume and/or pressure?  You might think from these issues that your system has seen better days and is ready to be replaced.  However, it is possible that your existing tried and true compressor system has more life left in it than you think and with a few simple steps you could have it performing like a champ again!

It is estimated that typically plants can waste up to 30 percent of their generated compressed air and that cost is substantial.  Considering the average cost to generate compressed air is .25 cents per 1000 SCFM, that translates into .075 cents for every .25 cents spent!  Considering that energy costs have doubled in the last five years, it couldn’t be more timely to make your air compressor system more efficient.

So just where is all this waste occurring?  The largest source of compressed air energy waste is from unused or leaked compressed air and that is followed by line pressure drops, over pressurization and inadequate maintenance of the compressor.

So how can you identify this issues in your system?

1). Finding leaks can be accomplished by several methods such as soapy water applied to a suspected joint or connection or the EXAIR Ultrasonic Leak Detector.   It is a high quality instrument that can locate costly leaks in your compressed air system.  When a leak is present and audible tone can be heard in the supplied headphones and the LED display will light.  This testing can be done up to 20′ away so need to get on a ladder!

Leak Detector

2). Pressure drop is caused by is caused by the friction of the compressed air flowing against the inside of the pipe and through valves, tees, elbows and other components that make up a complete compressed air piping system.  If the piping system is to small, the flow (volume) will not be sufficient and the devices will not operate properly.  The volumetric demand would need to be added up to determine if the piping is of sufficient diameter to flow the required volume.  EXAIR’s Digital Flow Meter is an easy way to monitor compressed air consumption and waste.  The digital display shows the exact amount of compressed air being used, making it easy to identify piping that may be undersized.  Installing one on every major leg of your air distribution system to constantly monitor and benchmark compressed air usage is a fast and efficient way to see what your volume through that distribution leg is.

Flow Meter

3). Over pressurization is also an issue, as the pressure is raised to account for high demand periods, system leaks and pressure drops. Unfortunately operating at higher pressures can require as much as 25 percent more compressor capacity than needed, generating wasted air which is called artificial demand.

You can reduce the leakage rate by running the compressor at lower pressures. If you’re short on air, don’t turn up the pressure. Run your compressor at no higher pressure than what you process requires. To relieve peak demands on your system consider the EXAIR Receiver Tank.  It store’s compressed air during low usage times and releases it when the demand is increased without working your air compressor system harder.

receiver_tank

4). Finally, a preventative maintenance (PM) program will need to be implemented to keep the air compressor system running properly.  Two items that are often neglected are the drive belts and filters.  Loose belts can reduce compressor efficiency and dirty filters allow dirt to get through the system and cause pressure drops.  EXAIR has replacement elements for our line of filter separators to keep you air clean and line pressure down.

By increasing your awareness of the health of your air compressor system and implementing a PM program you can significantly reduce your costs from wasted energy and avoid costly down time from an out of service air compressor.

If you would like to discuss improving your compressed air efficiency or any of EXAIR’s engineered solutions, I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

 

 

 

 

 

 

 

How to Calculate Compressed Air Consumption at a Different Inlet Pressure OR Math Doesn’t Lie and Neither Will Your Results

EXAIR Application Engineers field a wide variety of technical assistance questions. Many are quantifiable, and we just need to do a little math.  For instance:

Q. You publish the compressed air consumption of your products assuming a supply pressure of 80psig. What if my supply pressure is different?

A. Compressed air consumption is going to be directly proportional to ABSOLUTE pressure supply. That means you have to add atmospheric pressure of 14.7psia (a=absolute) to your gauge pressure, measured in psig (g=gauged, and zero on the gauge is atmospheric pressure,) and calculate the ratio. For example:

Our catalog publishes most products' performance and specification data for a compressed air supply pressure of 80psig.
Our catalog publishes most products’ performance and specification data for a compressed air supply pressure of 80psig.

Model 1100 Super Air Nozzle consumes 14 SCFM @80psig. How much will it consume @95psig?

1100 recalc

This is good news…if you need that extra amount of flow and force from a little higher pressure supply, you’re still FAR below the air consumption of an open-ended 1/4″ copper tube (33 SCFM @80psig or 38 SCFM @95psig)* or SCH40 pipe (140 SCFM @80psig or 162 SCFM @95psig.)*

*Using the same formula above.  Check my math if you like.  I’m right, but it’ll be good practice.  Those values come from this chart in our catalog, by the way:

open blow air consumption
You can get your own personal copy of our current catalog here.

Of course, if your application doesn’t need all that flow and force, this formula works the other way too…it, in fact, works in your favor, air consumption-wise.  Consider the savings associated with dialing back your supply pressure.  Let’s say, for instance, you replace a open ended 1/4″ SCH40 pipe with a Model 1100 Super Air Nozzle, regulate the supply down to 55psig, and find that it still does what you need it to:

1100 recalc-1

(Remember, the value you’re solving for is ALWAYS the numerator of the fraction, because…Algebra! )

Now, let’s do just a little more math.  Don’t worry; I’m almost finished.  Plus, this is the part you can show your boss and be the hero.  So, we find out that you’re saving 151.7 SCFM by replacing that open pipe blow off with a Super Air Nozzle, and regulating its supply pressure down from your full line pressure of 95psig to 55psig:

162 SCFM – 10.3 SCFM = 151.7 SCFM saved

You may know your facility’s cost of compressed air generation.  If not, $0.25 per 1,000 Standard Cubic Feet (SCF) is a reasonable estimate:

151.7 SCFM X 60 minutes/hour X 8 hours/day X 5 days/week X 52 weeks/year =

18,932,160 SCF/year X $0.25/1,000 SCF = $4,733.04 annual savings

Now, this is just an example…one in which a $34.00 (Model 1100 Super Air Nozzle’s current 2014 List Price) product pays for itself before the end of the second day (again, feel free to check my math and see how right I am.)  Keep in mind that your mileage, as they say, may vary, but the math…and our products’ performance…will hold true according to whatever your conditions are.

How much can you save by using engineered, Intelligent Compressed Air Products from EXAIR?  Call me, and we’ll start the process of finding out.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook