Compressed Air Efficiency – How It Benefits Business

It is estimated that typically plants can waste up to 30 percent of their generated compressed air and that cost is substantial.  Considering the average cost to generate compressed air here in the Midwest is .25 cents per 1,000 Standard Cubic Feet, that translates into .075 cents for every .25 cents spent!  Compounded with the fact that energy costs have doubled in the last five years, it couldn’t be a better time to make your air compressor system more efficient.

efficiencylab

The following steps will help you save air and in turn save money.

  1. Measure the air consumption to find sources that use a lot of compressed air.

Knowing where you stand with your compressed air demand is important to be able to quantify the savings once you begin to implement a compressed air optimization program. Placing a value upon your compressed air consumption will also allow you to place a value on its costs and the savings you will reap once you start to reduce your consumption. (EXAIR’s Digital Flow Meter)

9093ZG-DG

  1. Find and fix the leaks in your compressed air system.

Not fixing your compressed air system leaks can cause your system pressure to fluctuate and affect your equipment negatively. It may cause you to run a larger compressor than necessary for your compressed air needs and raise your total costs. Or it could cause your cycle and run times to increase which leads to increased maintenance to the entire system. (EXAIR’s Ultrasonic Leak Detector)

uhd kk

  1. Upgrade your blow off, cooling and drying operations using engineered compressed air products.

Your ordinary nozzle with a through hole and a cross drilled hole can be an easy choice based upon price, but if you do not consider the operating cost you do not really know how much it is costing you. An Engineered Air Nozzle will pay for itself and lower operating costs quickly. Engineered Air Nozzles are the future of compressed air efficiency and are made to replace ordinary nozzles, homemade nozzles and open line blow offs. Engineered Nozzles reduce air consumption and noise levels; ordinary nozzles cannot compete. Engineered Nozzles maintain safety features and can qualify for an energy savings rebate from a local utility; ordinary nozzles fall short. Open blow off or homemade blow off applications typically violate OSHA safety standards; Engineered Nozzles do not.  (EXAIR’s Air Nozzles)

nozzlescascade2016cat29_559
EXAIR Nozzles
  1. Turn off the compressed air when it is not in use.

Automated solutions add solenoid valves and run them from your machine controls. If the machine is off, or the conveyor has stopped – close the solenoid valve and save the air.  And blow off applications can benefit from any space in between parts by turning the air off during the gaps with the aid of a sensor and solenoid. (EXAIR’s automated  Electronic Flow Control)

 

  1. Use intermediate storage of compressed air near the point of use.

Also known as secondary receivers, intermediate air storage is especially effective when a system has shifting demands or large volume use in a specific area. Intermediate storage is the buffer between a large demand event and the output of your compressor. The buffer created by intermediate storage (secondary receiver) prevents pressure fluctuations which may impact other end use operations and affect your end product quality. (EXAIR’s Receiver Tanks)

  1. Control the air pressure at the point of use to minimize air consumption.

This is a very simple and easy process, all it requires is a pressure regulator. Installing a pressure regulator at all of your point of use applications will allow you to lower the pressure of these applications to the lowest pressure possible for success. Lowering the pressure of the application also lowers the air consumption. And it naturally follows that lower air consumption equals energy savings. (EXAIR’s Pressure Regulators)

By increasing your awareness of the health of your air compressor system and implementing a PM program you can significantly reduce your costs from wasted energy and avoid costly down time from an out of service air compressor.

If you would like to discuss improving your compressed air efficiency or any of EXAIR’s engineered solutions, I would enjoy hearing from you…give me a call.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

 

Compressed Air Use in the Aerospace Industry

EXAIR’s products have been used for a very large selection of applications in almost every industry.  Today I want to highlight a few that pertain to the Aerospace Industry.

First – a quick lesson on how to access the Applications database– Be sure to Register and then Log In

From the main page, hover the mouse pointer over ‘KNOWLEDGE BASE‘ and the pop-up menu will appear as seen below.  Select ‘APPLICATIONS’ Website Applications.png

On the left hand side of the screen you will see a gray navigation pane that shows Application with a list underneath.  Scroll down the main page and you will see a second heading in the navigation pane labeled “Industry”.  You can select your industry from the list provided.  For today’s example we will select Aerospace.

Industry_App_Database
The Industry section of the Application Database is found on the left hand side of the screen in the navigation pane.

Once the industry is selected there will be a new list of applications that are displayed in the center of the page.   Simply select the application you would like more information on and the details will display.

Below, we showcase the application from a machine manufacturer for the Aerospace industry.   This customer manufactured the production equipment of a flexible, porous material that is continuously passed through a wash tank prior to cutting to length.  They were interested in speeding the drying process of this strand, and considered blowing hot air onto it.  It was not feasible to install an electrically powered hot air blower or gun.  They needed an air flow of approximately 15 SCFM at 200°F, and had 70 psig air supply with a large volume available.  They utilized a Vortex Tube installed over the strand after it exited the dip tank.   The Vortex Tube was oriented with the hot air exhaust blowing on to the strand to dry the strand.  The customer stated that they not only met their expectations but exceeded the original hopes and were able to dry the product quicker and safer than expected.

Vortex_Tube_Drying_Material
Selecting any of the listed applications in the center of the screen will display the details of that particular application.

This is just one of many applications that are showcased in the Application Database for the Aerospace industry.   Those are just a small sampling of the thousands of applications that can be researched through the database.  If you would like to share your application to the database, feel free to contact an Application Engineer.

If you have questions about any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

The Adjustable Spot Cooler – Cold Air to -30°F (-34°C) From Your Compressed Air Supply

The Adjustable Spot Cooler is a low cost, reliable , maintenance free way to provide spot cooling to a myriad of industrial applications. Simply turn the knob, and the temperature can be changed to suit the needs of the process. The Adjustable Spot Cooler delivers precise temperature settings from -30°F (-34°C) to room temperature.

Adjustable Spot Cooler
Adjustable Spot Cooler

The Adjustable Spot Cooler utilizes the Vortex Tube technology that converts compressed air into a cold air stream. To learn more about EXAIR vortex tubes, click here.

  • It can produce temperatures form -30°F to +70°F (-34°C tp +21°C)
  • Parts included for flow rates of 15, 25 and 30 SCFM (425, 708, 850 SLPM.) The unit comes from the factory set at 25 SCFM (708 SLPM)
  • It can produce refrigeration up to 2,000 BTU/hr (504 Kcal/hr.)

A swivel magnetic base allows for easy mounting and portability, you can move it from machine to machine as needed. The flexible cold air outlet tubing holds its position and is easy to aim. Most importantly, there are no moving parts or CFC’s, ensuring maintenance free operation.

asc_onlathecmyk
The Adjustable Spot Cooler maintains critical tolerances on machined plastic parts

How the Adjustable Spot Cooler WorksThe Adjustable Spot Cooler incorporates a vortex tube to convert a supply of compressed air (1) into two low pressure streams, one hot and one cold. With the turn of a knob, the temperature control valve (2) allows some hot air to flow through a muffling sleeve and out the hot air exhaust (3). The opposite end provides a cold air stream (4) that is muffled and discharged through the flexible hose, which directs it to the point of use. The swivel magnetic base (5) provides easy mounting and portability.


The Adjustable Spot Cooler can produce a wide range of air flows and temperatures as determined by the temperature control valve knob setting and the generator installed. The generator controls the total SCFM (SLPM) of compressed air consumption, and is easy to change. From the factory, the 25 SCFM (708 SLPM) generator is installed, producing up to 1,700 BTU/hr (429 Kcal/hr) of cooling. For less cooling, the 15 SCFM (425 SLPM) generator can be installed, providing up to 1,000 BTU/hr (252 Kcal/hr) of cooling. And for more cooling, the 30 SCFM (850 SLPM) generator can be installed, providing up to 2,000 BTU/hr (504 Kcal/hr) of cooling.

Adjustable Spot Cooler Specifications

Two (2) Systems are available as shown below, and include the 15 and 30 SCFM (425 and 850 SLPM) generators, a filter separator, and either a single or dual point hose kit.

Adjustable Spot Cooler Systems3825_3925 adj spot cooler

If you have questions about the Adjustable Spot Cooler or any of the 16 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Business Benefits Of Compressed Air Efficiency

The primary business benefits of an efficient air compressor system are reduced operational costs, reduced maintenance and increased up-time.  With that being said, is your compressed air system costing you more than you think it should?  Are you having failures, pressure drops, inadequate volume and/or pressure?  You might think from these issues that your system has seen better days and is ready to be replaced.  However, it is possible that your existing tried and true compressor system has more life left in it than you think and with a few simple steps you could have it performing like a champ again!

It is estimated that typically plants can waste up to 30 percent of their generated compressed air and that cost is substantial.  Considering the average cost to generate compressed air is .25 cents per 1000 SCFM, that translates into .075 cents for every .25 cents spent!  Considering that energy costs have doubled in the last five years, it couldn’t be more timely to make your air compressor system more efficient.

So just where is all this waste occurring?  The largest source of compressed air energy waste is from unused or leaked compressed air and that is followed by line pressure drops, over pressurization and inadequate maintenance of the compressor.

So how can you identify this issues in your system?

1). Finding leaks can be accomplished by several methods such as soapy water applied to a suspected joint or connection or the EXAIR Ultrasonic Leak Detector.   It is a high quality instrument that can locate costly leaks in your compressed air system.  When a leak is present and audible tone can be heard in the supplied headphones and the LED display will light.  This testing can be done up to 20′ away so need to get on a ladder!

Leak Detector

2). Pressure drop is caused by is caused by the friction of the compressed air flowing against the inside of the pipe and through valves, tees, elbows and other components that make up a complete compressed air piping system.  If the piping system is to small, the flow (volume) will not be sufficient and the devices will not operate properly.  The volumetric demand would need to be added up to determine if the piping is of sufficient diameter to flow the required volume.  EXAIR’s Digital Flow Meter is an easy way to monitor compressed air consumption and waste.  The digital display shows the exact amount of compressed air being used, making it easy to identify piping that may be undersized.  Installing one on every major leg of your air distribution system to constantly monitor and benchmark compressed air usage is a fast and efficient way to see what your volume through that distribution leg is.

Flow Meter

3). Over pressurization is also an issue, as the pressure is raised to account for high demand periods, system leaks and pressure drops. Unfortunately operating at higher pressures can require as much as 25 percent more compressor capacity than needed, generating wasted air which is called artificial demand.

You can reduce the leakage rate by running the compressor at lower pressures. If you’re short on air, don’t turn up the pressure. Run your compressor at no higher pressure than what you process requires. To relieve peak demands on your system consider the EXAIR Receiver Tank.  It store’s compressed air during low usage times and releases it when the demand is increased without working your air compressor system harder.

receiver_tank

4). Finally, a preventative maintenance (PM) program will need to be implemented to keep the air compressor system running properly.  Two items that are often neglected are the drive belts and filters.  Loose belts can reduce compressor efficiency and dirty filters allow dirt to get through the system and cause pressure drops.  EXAIR has replacement elements for our line of filter separators to keep you air clean and line pressure down.

By increasing your awareness of the health of your air compressor system and implementing a PM program you can significantly reduce your costs from wasted energy and avoid costly down time from an out of service air compressor.

If you would like to discuss improving your compressed air efficiency or any of EXAIR’s engineered solutions, I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

 

 

 

 

 

 

 

Air Amplifiers – What is an Amplification Ratio?

On Friday my colleague, Russ, blogged about the Super Air Amplifier (see that BLOG here, including a video demo)  In discussing the Air Amplifiers, the topic of amplification was mentioned. Today, I’d like to expand a bit further the amplification aspect of the Air Amplifier performance.

As the name of the device implies, the compressed air used by the Air Amplifier is added to, and thus ‘amplified’, the total output flow of the unit. Depending on the size and type of Air Amplifier, the amplification ratio starts at 12:1 and goes up to 25:1, with the ratio being the output flow to the compressed air usage.

AirAmplifiers.jpg
Super Air Amplifier and Adjustable Air Amplifier

EXAIR offers (2) types- the Super Air Amplifier and the Adjustable Air Amplifier.  The Super Air Amplifier uses a patented shim technology to maintain a precise gap, which controls the compressed air flow and expansion through the unit.  As the expanded air flows along the Coanda profile, a low pressure area is created at the center which induces a high volume flow of surrounding air into the primary air-stream.  The combined flow of primary and surrounding air exhausts from the Air Amplifier in a high volume, high velocity flow.  The larger diameter units have a greater cross sectional area with larger low pressure areas, resulting in greater amplification ratios.

The Below table shows the amplification ratios.

SuperAirAmplifierPerformance

The Adjustable Air Amplifier does not use a shim, but rather has an infinitely adjustable gap, allowing for fine adjustment of performance.  Force and flow is changed by turning the exhaust end to adjust the gap, and is then locked into place. The method of the amplification is the same as for the Super Air Amplifier, and the amplification ratios are similar and shown below.

AdjustableAirAmplifierPerformance

The Super Air Amplifiers and Adjustable Air Amplifiers are ideal for use in applications and processes that require cooling, drying and/or cleaning of parts, or the ventilation of confined areas or weld smoke or the exhausting of tank fumes.

If you have questions regarding the Air Amplifier, or would like to talk about any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

EXAIR Super Air Knives Helps Keep Labels on the Bottles.

Super Air Knife Blower Air Knife

Sometimes you need more power.  I received a phone call from a bottling facility that was currently using a blower style type of air knives.  They increased their production rate from 220 bottles/min to 300 bottles/minute, and they started to see issues in the labeling process.  Their operation consisted of a wash cycle, rinse cycle, drying cycle, then labeling.  They determined that the bottles were not getting dry enough during the drying cycle before the labels were applied.  They had a VFD (Variable Frequency Drive) for the blower system, and they reached the maximum rate.  Still the bottles were not getting dry enough to allow the label to stick to the surface properly.  This meant that they would have to increase the size of their blower system.  With the capital cost of a blower system, they decided to call EXAIR to see if we could help them with the drying application.

Compressed air is the best way for establishing a strong blowing force.  Instead of air pressures in the range of inches of water, the compressed air system can generate over 40 times the amount of pressure than a typical blower system.  EXAIR products uses this power of the compressed air to give you a wide range of blowing forces for drying, cooling, or moving products.  For the above application, I recommended two model 110212 Super Air Knife kits.  The kit includes the Super Air Knife, a filter, a regulator, and a shim set.  They mounted one knife on each side of the bottles to blow off and remove the liquid after the rinse cycle.  Even at the increased bottle speeds, the EXAIR Super Air Knives had no issues in keeping the bottles dry.  With the regulator and the shim, it was easy for them to dial in the correct amount of force without using excess compressed air.  The labels remained glued and the bottling process ran smoothly.  Because the company was impressed by the Super Air Knives, they wanted to comment on the comparisons between the blower knife and the Super Air Knife.

  1. Cost:
    1. Blower System – The reason for contacting EXAIR. Blower-type air knives are an expensive set up.  They require a blower, ducting, and a knife.  To have any flexibility, a control panel with a VFD will be needed.
    2. Super Air Knife – It is a fraction of the cost. With their system, we were roughly 1/10 the cost; even with the kit.  No capital expense report would be needed for the two air knives.
  2. Installation:
    1. Blower System – They stated that it took them a week to install the entire system before they were able to operate. They had to run electrical wires, controls, ducting, and they even had to change the conveying system slightly to accommodate the blower size.
    2. Super Air Knife – They mounted the filter and the regulator on the conveyor, and ran tubing to the Super Air Knives. Even with a fabricator making a bracket to fit into their system, they had the system up and running is less than two hours.
  3. Size:
    1. Blower System – The foot print of the blower is large and it takes up floor space. The 3” ducting had to be ran to an oversized air knife.  With the congestion of the bottle system, it made it difficult to optimize the position and the blowing angle to adequately dry the bottles.
    2. Super Air Knife – With the compact design, the Super Air Knife packs a large force in a small package. It has a footprint of 1 ¾” X 1 ½” X 12” long.  The air knife only required a ¼” NPT compressed air line to supply the compressed air.  It opened up the floor space as well as the bottling area.
  4. Maintenance:
    1. Blower System – The blower filter had to be changed regularly, and system had to be checked. Being that the blower motor is a mechanical device, the bearings will wear and the motor will fail over time.  These items should be checked quarterly as a PM which increase the cost to run the system.
    2. Super Air Knife – No moving parts to wear out. The only maintenance would be to change the filter once a year.
  5. Versatility:
    1. Blower System – They did have a VFD to control the blowing force. But it was still very limited.  With a 36% increase in the bottle speed, they went beyond the maximum capacity of the blower.
    2. Super Air Knife – With a regulator and the shim set, the blowing force can be controlled easily from a breeze to a blast. With their application, the customer only required 40 psig with a standard 0.002” shim to clean and dry the bottles.  They had the option to adjust the regulator or change the shim to get the appropriate amount of blowing force.  So, with any changes in the bottling operations, the Super Air Knife could easily be adjusted.  Also, with the blowing force being optimal from a distance of 3” to 12” from the target, they had more flexibility in angle and distance to hit the moving target.
  6. Quiet:
    1. Blower System – With the blower and turbulent air flow, the units are very loud. It had a sound level near 93 dBA, and with the operators working around the system, they needed PPE to protect them from the high potential of noise induced hearing loss.
    2. Super Air Knife – These units are very quiet. At 40 PSIG, the sound level is only at 61 dBA.  (Even operating at a pressure of 100 PSIG, the sound level is only 72 dBA).  This was very nice for the operators to work around as it wasn’t a constant noise nuisance.

In using the compressed air, the Super Air Knives are engineered to be very efficient.  The design creates a 40:1 amplification ratio which means that for every 1 part of compressed air, 40 parts of the ambient air is entrained.  But, even with the use of compressed air, the customer still wanted to share the ease of installing, the effectiveness of blowing, and the improvements to their process.  With the 6 points noted above, the customer wished that they would have contacted EXAIR at the beginning.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

EXAIR Application Details Guide

The EXAIR website is valuable resource for reviewing and getting information about the many Intelligent Compressed Air® Products that we manufacture and sell.  It is a good place to learn more about the products, how they work, calculate air savings, see the many styles and materials of construction and much, much more.

If you have a specific application and would like us to review the process parameters and get our recommendation as to the best way to solve the issue, you can utilize the Application Assistance Worksheet located on the Left Menu Bar on many of the Product Pages.

Capture

Clicking on the Application Assistance Worksheet will provide you with a couple of ways to access the form.  Choosing one of the options will present you with the form below.

ApplicationDetailsGuide

This form has sections regarding Process Description, Part Specifications, Product Movement, and Other for general information.  By filling out this form with as much detail possible, and then online submitting or emailing to applications@exair.com, one of our Application Engineers will review and be in contact with you to further discuss in preparation for presenting a solution for you.

Or – to discuss your processes and how an EXAIR Intelligent Compressed Air® Product can provide a beneficial service, feel free to contact EXAIR and myself or one of our other Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB