EXAIR Case Studies Share Succe$$

EXAIR provides many informative tools to help you decide which of our products will work best for you. We have a qualified staff of Application Engineers, a comprehensive catalog, Installation Sheets, Blogs, and a library of Case Studies, to name a few. Following is more about our Case Studies and how they can be helpful.

EXAIR keeps a library of Case Studies for your reference. The Library s is also organized by product so you can easily find the information and product you have interest. These case studies summarize how our customers have purchased, used, and benefited from our products and their purchase. These studies focus on our products and your project, we do not use our customer names and only use photos and verbiage that you approve and share with us.

The process to develop a Case Study is as easy as talking to one of our Application Engineers. We will discuss your project and work with you to decide the wording and photos that you approve for the study. Once the study has been completed and approved we can discuss a credit on your purchase or percentage discount on your next purchase. This becomes a “win, win” for both you and EXAIR.

EXAIR appreciates a good success story, and we want to encourage you to share your success from using one or more of our products. This is why EXAIR incentivizes Case Studies. We will offer a discount to any company who will provide enough information to produce a case study. If you have interest to create a Case Study (and save money) on your next project please contact one of our Application Engineers so we can discuss your application and goals.

Eric Kuhnash
Application Engineer
E-mail: EricKuhnash@exair.com
Twitter: Twitter: @EXAIR_EK

Laminar and Turbulent Air Flow

I have a manufacturing background primarily with automotive and plastic injection molding. I used compressed air but I will admit that I did not know the difference between Laminar and Turbulent air flow. You’ll often hear EXAIR refer to laminar vs turbulent flow when discussing our blow off of products. I will briefly describe the difference between the two and hopefully we all learn something new. In any blow off process or application, laminar airflow is going to be much more effective at eliminating pressure drops, blowing product and reducing noise levels than the turbulent air flow. To read more about the math behind it, check out my colleague John Ball’s previous post here.

A good example of an EXAIR product that delivers a laminar air flow are our Super Air Knives. The super air knife offers a more efficient way to clean, dry or cool parts, webs or conveyors. They deliver a uniform sheet of “Laminar” airflow across the entire hard-hitting force. The Super Air Knives deliver a uniform sheet of air that has the same force across the entire length.

The efficiency of EXAIR’s Super Air Knife delivering the laminar air flow becomes more valuable when comparing the effectiveness to a blower operated knife or fans. A fan “slaps” the air, resulting in a turbulent airflow where the airflow particles are irregular and will interfere with each other. A laminar airflow, by contrast, will maintain smooth paths that will never interfere with one another, which allows for maximum velocity and can produce higher force levels.

EXAIR had a customer needing help applying icing on snack cakes. As baked sponge cakes moved down a conveyor, a continuous ribbon of icing was applied to the individual cakes. Trying to make a clean break in the icing was next to impossible. Mechanical blades needed constant cleaning. Compressed air through a series of holes in drilled pipe used too much air, was noisy and did not make a clean break.

The solution was using an EXAIR Stainless Steel Super Air Knife. A photo eye detected space between cakes turning the compressed air on at the precise moment to apply a uniform airflow and velocity against the ribbon of icing, creating a nice clean break. The stainless steel Air Knife was the best choice for this application. Since there was no contact with the icing, no additional cleaning was required. The Laminar flow of the Super Air Knife had uniform velocity across the entire length and broke the ribbon of icing evenly. This successful result would never have been possible with turbulent air from drilled pipe, nozzles or a blower.

The Super Air knives are just one of many of EXAIR’s Intelligent Compressed Air products. When planning your next project that requires compressed air please contact one of our many Application Engineers for assistance. EXAIR takes pride in our products and customer service.

Eric Kuhnash
Application Engineer
E-mail: EricKuhnash@exair.com
Twitter: Twitter: @EXAIR_EK

Understanding your ROI for EXAIR Products

I used to hold a purchasing/engineering role for a previous company and as part of that role I was required to understand all costs of a project. The value of knowing the return of your investment is obvious but the benefit of this knowledge enhanced communications with other team members and at times with your customer. So how can I understand the economic impact from purchasing and Intelligent Compressed Air product from EXAIR?

EXAIR makes an easier job of calculating your ROI when purchasing our product(s). Simply go to www.EXAIR.com and click on “Resources”, located on the top center of our homepage. You will see “Calculator Library” where you can see our “Air Savings Calculator“.

Calculating your ROI using this tool is simple, simply place your current consumption rate (SCFM), the cost of our product(s), the SCFM for our product(s) and your cost of compressed air per 1000 Cubic feet (if this is unknown, $0.25/1000 cubic feet is a reasonable number to use).

  1. Current Consumption (SCFM): This is the current air requirements for your current process.
  2. Cost of EXAIR Product(s): This is the expenditure of the EXAIR product(s) being purchased.
  3. EXAIR Product(s) consumption (SCFM): This can be found in our catalog, web site or by calling EXAIR and talking to an Application Engineer.
  4. Cost of Compressed Air: This can be determined at your facility or a good industry average is $0.25/1000.

The calculator will automatically calculate your return and show you the payback in number of days. EXAIR encourages the use of our website and/or calling our Application Engineers for additional information or education on air savings. We are customer friendly and always eager to help.

Eric Kuhnash
Application Engineer
E-mail: EricKuhnash@exair.com
Twitter: Twitter: @EXAIR_EK

Henri Coanda and his Effect on Compressed Air

Henri defined the Coanda Effect – the tendency of a jet of fluid emerging from an orifice to follow an adjacent flat or curved surface and to entrain fluid from the surroundings so that a region of lower pressure develops.

Compressed air flows through the inlet (1) to the Full Flow (left) or Standard (right) Air Knife, into the internal plenum. It then discharges through a thin gap (2), adhering to the Coanda profile (3) which directs it down the face of the Air Knife. The precision engineered & finished surfaces optimize entrainment of air (4) from the surrounding environment.

Henri-Marie Coanda (1885-1972) discovered the Coanda Effect in1930. He observed that a stream of air (fluid) emerging from a nozzle tends to follow a nearby curved surface, if the curvature of the surface or angle the surface makes with the stream is not too sharp. For example, if a stream of fluid is flowing along a solid surface which is curved slightly from the stream, the fluid will tend to follow the surface.

A number EXAIR products are designed to utilize the Coanda Effect and aid their performance. In some products, the Coanda Effect aids to create an amplification area where additional ambient air is drawn into the total airflow to increase total volume of air upon a target. This creates a more efficient and effective product. Also, since not as much compressed air is required, the noise levels decrease for products like EXAIR’s air knives, air nozzles, air jets and air amplifiers. EXAIR has been successful with positive impact for compressed air energy savings and noise reductions helping us meet or exceed OSHA Standard 29 CFR-1910.95 9(a) Maximum Allowable Noise Exposure.

Please contact EXAIR with regards to our Intelligent Compressed Air Products. We can help you with your next cooling, blow-off, drying or any compressed air needs.

Eric Kuhnash
Application Engineer
Email: erickuhnash@exair.com
Twitter: @EXAIR_EK

1- Spoon Coanda image- https://creativecommons.org/licenses/by-sa/2.5/deed.en