Henri Coanda and his Effect on Compressed Air

Henri defined the Coanda Effect – the tendency of a jet of fluid emerging from an orifice to follow an adjacent flat or curved surface and to entrain fluid from the surroundings so that a region of lower pressure develops.

Compressed air flows through the inlet (1) to the Full Flow (left) or Standard (right) Air Knife, into the internal plenum. It then discharges through a thin gap (2), adhering to the Coanda profile (3) which directs it down the face of the Air Knife. The precision engineered & finished surfaces optimize entrainment of air (4) from the surrounding environment.

Henri-Marie Coanda (1885-1972) discovered the Coanda Effect in1930. He observed that a stream of air (fluid) emerging from a nozzle tends to follow a nearby curved surface, if the curvature of the surface or angle the surface makes with the stream is not too sharp. For example, if a stream of fluid is flowing along a solid surface which is curved slightly from the stream, the fluid will tend to follow the surface.

A number EXAIR products are designed to utilize the Coanda Effect and aid their performance. In some products, the Coanda Effect aids to create an amplification area where additional ambient air is drawn into the total airflow to increase total volume of air upon a target. This creates a more efficient and effective product. Also, since not as much compressed air is required, the noise levels decrease for products like EXAIR’s air knives, air nozzles, air jets and air amplifiers. EXAIR has been successful with positive impact for compressed air energy savings and noise reductions helping us meet or exceed OSHA Standard 29 CFR-1910.95 9(a) Maximum Allowable Noise Exposure.

Please contact EXAIR with regards to our Intelligent Compressed Air Products. We can help you with your next cooling, blow-off, drying or any compressed air needs.

Eric Kuhnash
Application Engineer
Email: erickuhnash@exair.com
Twitter: @EXAIR_EK

1- Spoon Coanda image- https://creativecommons.org/licenses/by-sa/2.5/deed.en

Case Study: Adjustable Spot Cooler Saves Thousands of Dollars in the Textile Industry

A few months ago I got a call from a major producer of high-performance knitted products who operates 128 Spindle motors on circular sock machines (CSM) that require couplings. These couplings use hi-speed, hi-temperature bearings that have been failing regularly, prior to the predicted run life. This was resulting in loss of production while the CSM is down and the bearings are replaced, repair costs associated with refurbishing the failed CSM bearing include labor, new bearings, lost production, etc. The average cost of a failed CSM bearing including lost production was around $1925.00 and on average they were seeing 180 premature failures each year.

Bearing Housing

My recommendation was using a 3925 Adjustable Spot Cooler System with the dual outlets to spread the cooling around the bearing. They had tried fans and electric blowers and they noticed no benefits. How ever when they placed the 3925 on the largest trouble maker that was burning bearings at the highest rate they noticed a prolonged lifetime of over 260%!!!!

3925 In Action
Hard Plumbed into place.

The enhanced run life of the CSMs was noticed immediately as the non-cooled CSM bearings continued to fail at a much higher rate when compared to the positions with the Exair Spot Coolers installed.

Based on the average cost of a failed CSM bearing including lost production ($1925.00) and an average of (180) premature failures each year, their estimated annual savings using the Adj. Spot Cooler is $346,500.00 on just the 12 high fail rate machines they have put these on to date. They are expecting to place a 3295 on every CSM within 5 years focusing on the high fail rate machines first. 

If you think the Adjustable Spot cooler can help your process, give us a call or shoot us an email!

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

EXAIR Mini Cooler Overview

I recently had a chat conversation with a customer who was looking to cool the tooling on his CNC router, mill and lathe in his small machine shop. As the day went on the tooling would begin to heat up, it would warp the bit, causing irregularities in the finished product. In some cases the tooling was getting so hot, it would actually break, creating a safety concern.

adj spot cooler
Model 3925 Adjustable Spot Cooler System has a Dual Outlet Hose Kit for distribution of cold air flow to two points.

He had reviewed some of our cooling products and was thinking of using our Cold Gun in the application but was concerned with the air demand. The Cold Gun consumes 15 SCFM @ 100 PSIG and provides a 50°F temperature drop (from supply temperature) with 1,000 Btu/hr. of cooling capacity. The problem was that his compressor only produces a little over 9 SCFM. I explained that the existing compressor would in fact be undersized as it doesn’t produce enough volume to keep up with the demand of the Cold Gun.

minicoolerWFAM_500
EXAIR Mini cooler with dual and single outlets

Due to the limited amount of compressed air available, our Mini Cooler System, Model #3808, would be the better solution. The Mini Cooler also provides a 50°F temperature drop with a little less cooling power, 550 Btu/hr., but this system only requires 8 SCFM @ 100 PSIG, falling within the existing compressor’s output capacity. The Mini Cooler also includes a magnetic base as well as flexible tubing to direct the cold air to the desired location, making it easy to move from machine to machine.

MiniCoolerLVpr2019_350
EXAIR Mini Cooler with dual Points

For U.S. and Canadian customers, EXAIR offers a 30-day unconditional guarantee to try.

If you want to learn more about the EXAIR Mini Cooler or any cooling product, you can contact an Application Engineer.  We will be happy to help you.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

A Cold Winter’s Chill and Vortex Tubes

Two weekends ago I had the pleasure of flying out to meet my friend in Colorado Springs and ski the weekend at Breckenridge. As an avid skier Breckenridge has been one of the resorts I have been wanting to ski since I started skiing out west. The weather was amazing and I couldn’t ask for better; the Saturday blue skies and cool breeze followed up by a Sunday of snow fall. The Trip was a dream come true. Breckenridge is specifically known for having high winds that howl across the peaks that stand at a max of 12,998 ft. above sea level. These chilling winds would freeze just about anyone if you aren’t dressed prepared for them as they blow right in your face on the lift. As I was sitting on the lift with these cold winds blowing in my face it brought to mind EXAIR’s Vortex Tubes, Cold Guns, and Cabinet Coolers.

EXAIR’s Vortex Tubes and similar products provide everything from a cool blast of air to a frigid breeze to cool off various parts and products. In a lot of smaller milling and grinding applications the Cold Gun has been used as a replacement to costly coolant-based alternatives. Vortex tubes have been used in cooling applications since 1945 and assist in everything from stress testing electronics to cooling down plastic parts during ultrasonic welding.

 Vortex tubes use a source of compressed air to create a hot and cold stream of air coming out on opposite ends of the device. This means that not only can the vortex tube be used for cooling but also heating applications. In one case a vortex tube was used to heat up an adhesive before it was sealed to get a better adhesion. Although the vortex tube can be used for heating purposes those applications are few and far between as usually a heating element or other heating source is more applicable.
Vortex tubes are quickly adjustable, just as the winds of Breckenridge can change from being a breeze to almost blowing you off of the mountain. Weather in the mountains is always varying and so are EXAIR’s Vortex Tubes.

If you have any questions or want more information on how we use our vortex tubes to improve processes all over industry. Give us a call, we have a team of application engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook