EXAIR manufactures three sizes of Vortex Tubes, small, medium & large. Each size can produce a range of cooling power that can be changed by installing a different generator that will change the volume output capability of that Vortex Tube.
If a different cooling capacity is desired, other generators are available by either purchasing them individually or by purchasing one of the (3) highly versatile Vortex Tube Cooling Kits designated as the 3908 (small), 3930 (medium) or 3998 (large). The Kits include the Vortex Tube, Filter Separator, Vinyl Tubing, Tubing Adapter, Tube Clamps, Cold End Muffler (Optional Hot End Muffler Available) and Both “R” & “C” Generators.
If you would like to discuss Vortex Tubes, their Generators, or any of EXAIR’s safe, quiet & efficient compressed air products, I would enjoy hearing from you…give me a call or shoot me an email!
When most of us think of really smart folks, names like Albert Einstein, Carl Sagan, Stephen Hawking, or Richard Feynman often pop up. It’s interesting that, when THOSE folks thought about really smart folks, one name repeatedly came to mind:
“Maxwell’s equations have had a greater impact on human history than any ten presidents.” – Carl Sagan
“From a long view of the history of mankind — seen from, say, ten thousand years from now — there can be little doubt that the most significant event of the 19th century will be judged as Maxwell’s discovery of the laws of electrodynamics.” – Richard Feynman
“Maxwell is the physicist’s physicist.” – Stephen Hawking
“The special theory of relativity owes its origins to Maxwell’s equations of the electromagnetic field.” – Albert Einstein
“The work of James Clerk Maxwell changed the world forever.” – Albert Einstein (again)
If you follow the EXAIR blog, you may recall that we’ve written more than a couple of entries on James Clerk Maxwell…here, here, and here, just to point out a few. We, of course, all like to point out a thought experiment that he devised regarding a potential loophole in the 2nd Law of Thermodynamics – a “friendly little demon” that could separate a theoretical chamber of gas (consisting of molecules with different kinetic energies) into two sub-chambers: one with all the faster moving (e.g., higher temperature) molecules, and another with all the slower moving (e.g., lower temperature) molecules.
Fun fact: When Maxwell first proposed this thought experiment in a letter to Lord Kelvin, he called it a “finite entity”. Lord Kelvin (much to Maxwell’s chagrin) started calling it a “demon” and the name stuck.
In what MAY be one of the grandest of coincidences in science, the work of this “finite entity” or “demon” is uncannily similar to that of one of the more interesting compressed air operated devices: the Vortex Tube:
When compressed air flow enters, a spinning motion is imparted by the Generator. When the spinning flow reaches the end of the Vortex Tube, a portion is forced to change directions and continue spinning, in the opposite direction, inside the outer spinning flow. When it does so, it gives off energy in the form of heat. The net result is, the air entering at a given temperature is separated into two distinct air streams: one hot, and one cold.
Now, us compressed air aficionados aren’t the only ones who’ve happened upon latter-day incorporations of Maxwell’s thought experiment. Information theory enthusiasts have implied a correlation with the principle of erasure, and scientists at the University of Oxford designed an experiment with a light-powered gate that seems to validate the idea (“How Maxwell’s Demon Continues to Startle Scientists”, Quanta Magazine, 4/22/2021).
I’ve been with EXAIR Corporation for just shy of eleven years now, and every time I hook up a Vortex Tube in the Efficiency Lab, I still recall the wonder of seeing one in action the first time. Considering that this is a 20th Century innovation (and the information theory & light-powered gate experiments are 21st Century), it’s equally impressive to keep in mind what else was going on in the world when Maxwell devised this thought experiment in 1867:
At the beginning of March, Nebraska is admitted as the 37th U.S. State. And at the end of the month, the U.S. finalizes the purchase of Alaska from Russia.
Alfred Nobel gets a patent for dynamite in the United Kingdom, in May.
The first school for dentistry, the Harvard School of Dental Medicine, opens.
And…in case you were wondering, EXAIR Application Engineers also have a list of folks they consider to be really smart folks. If you’re curious, click here.
Russ Bowman, CCASS
Application Engineer EXAIR Corporation Visit us on the Web Follow me on Twitter Like us on Facebook
James Clerk Maxwell was born in Edinburgh Scotland on June 13, 1831 and from the age of three years old he was described as have an innate sense of inquisitiveness. In 1839 at the young age of 8 years old James’ mother passed away from abdominal cancer which put the boy’s father and father’s sister-in-law in charge of his schooling. In February of 1842 James’ father took him to see Robert Davidson’s demonstration of electric propulsion and magnetic force; little did he know that this event would strongly impact on his future.
Fascinated with geometry from an early age James would go on to rediscover the regular polyhedron before he was instructed. At the age of 13 James’ would go on to win the schools mathematical medal and first prize in both English and Poetry.
Later in his life James would go on to calculate and discover the relationship between light, electricity, and magnetism. This discovery would lay the ground work for Albert Einstein’s Special Theory of Relativity. Einstein later credit Maxwell for laying the ground work and said his work was “the most profound and the most fruitful that physics has experienced since the time of Newton.”. James Maxwell’s work would literally lay the ground work for launching the world into the nuclear age.
Starting in the year 1859 Maxwell would begin developing the theory of the distribution of velocities in particles of gas, which was later generalized by Ludwig Boltzmann in the formula called the Maxwell-Boltzmann distribution. In his kinetic theory, it is stated that temperature and heat involve only molecular movement. Eventually his work in thermodynamics would lead him to a though experiment that would hypothetically violate the second law of thermodynamics, because the total entropy of the two gases would decrease without applying any work. His description of the experiment is as follows:
“…if we conceive of a being whose faculties are so sharpened that he can follow every molecule in its course, such a being, whose attributes are as essentially finite as our own, would be able to do what is impossible to us. For we have seen that molecules in a vessel full of air at uniform temperature are moving with velocities by no means uniform, though the mean velocity of any great number of them, arbitrarily selected, is almost exactly uniform. Now let us suppose that such a vessel is divided into two portions, A and B, by a division in which there is a small hole, and that a being, who can see the individual molecules, opens and closes this hole, so as to allow only the swifter molecules to pass from A to B, and only the slower molecules to pass from B to A. He will thus, without expenditure of work, raise the temperature of B and lower that of A, in contradiction to the second law of thermodynamics.“
Here at EXAIR we are very familiar with Maxwell’s “friendly little demon” that can separate gases into a cold and hot stream. His thought experiment, although unproven in his life time, did come to fruition with the introduction of the Vortex Tube.
Vortex Tube a.k.a Maxwell’s Demon
With his birthday being last weekend I propose that we raise a glass and tip our hats to a brilliant man and strive to remember the brilliant ideas that he gave us.
If you have any questions or want more information on EXAIR’s Cabinet Coolers or like products. Give us a call, we have a team of application engineers ready to answer your questions and recommend a solution for your applications.
Cody Biehle Application Engineer EXAIR Corporation Visit us on the Web Follow me on Twitter Like us on Facebook
The most common questions about Vortex Tubes are “How long have they been around?” and “How do they work?”. These questions are simple enough and answering someone how long Vortex Tubes have been around is the easy answer, Vortex Tubes have been around since 1928 with what may seem as an accidental existence by the developer George Ranque.
As to how they work, these are a phenomenon of physics and the theoretical math behind them has yet to be proven and set in stone. They have been called various names such as “Maxwell’s Demon” which posited that a demon was splitting the hot and cold air molecules prior to leaving the Vortex Tube. They have also been referred to as the “Ranque Vortex Tube”, “Hilsch Tube”, and the “Ranque-Hilsch Tube” which highlight some of the prominent people in developing vortex tubes.
WHAT: EXAIR defines a Vortex Tube within our catalog as “a low cost, reliable, maintenance free solution to a variety of industrial spot cooling problems. Using an ordinary supply of compressed air as a power source, vortex tubes create two streams of air, one hot and one cold, with no moving parts.”
The scope of Vortex Tubes include being able to produce temperatures from -50 degrees to 260 degrees Fahrenheit with flow rates from 1 to 150 SCFM and refrigeration up to 10,200 Btu/hr. Temperatures, flows and cooling power can be easily adjusted with the control valve located on the “hot” end of the tube.
WHY: EXAIRs’ Vortex Tubes offer low cost and reliable solutions primarily for product cooling and sometimes heating. Constructed of stainless steel, our vortex tubes are resistant to corrosion and oxidation providing for years of reliable maintenance-free operation. Vortex tubes operate with a source of compressed air with no moving parts or electricity.
EXAIR offers two series of vortex tubes. The 32XX series is “Maximum Refrigeration (cooling) and is typically used for process cooling, part cooling or chamber cooling. The 34XX series provide lowest cold temperatures at low cold airflow and typically used in cooling lab samples and circuit testing.
EXAIR offers a cooling kit with interchangeable generators that are easily changed so you can experiment and find what temperature and airflow works best for your application.
WHERE: There are many uses for EXAIR Vortex Tubes including but not limited to cooling electronics, machining operations, CCTV cameras, soldered parts, gas samples, heat seals, environmental chambers, ultrasonic weld horns, welds and setting hot melts.
The history of EXAIR Vortex Tubes and the variety of uses has derived new products designed for specific applications like our Spot Coolers and Cabinet Coolers. These items can be found in our catalog or at www.EXAIR.com.
If you have any questions regarding these products or any products that EXAIR offers I hope to hear from you.