Vortex Tube Cold Fractions Explained

Simply put, a Vortex Tube’s Cold Fraction is the percentage of its supply air that gets directed to the cold end. The rest of the supply air goes out the hot end. Here’s how it works:

The Control Valve is operated by a flat head screwdriver.

No matter what the Cold Fraction is set to, the air coming out the cold end will be lower in temperature, and the air exiting the hot end will be higher in temperature, than the compressed air supply.  The Cold Fraction is set by the position of the Control Valve.    Opening the Control Valve (turning counterclockwise, see blue arrow on photo to right) lowers the Cold Fraction, resulting in lower flow – and a large temperature drop – in the cold air discharge.  Closing the Control Valve (turning clockwise, see red arrow) increases the cold air flow, but results in a smaller temperature drop.  This adjustability is key to the Vortex Tube’s versatility.  Some applications call for higher flows; others call for very low temperatures…more on that in a minute, though.

The Cold Fraction can be set as low as 20% – meaning a small amount (20% to be exact) of the supply air is directed to the cold end, with a large temperature drop.  Conversely, you can set it as high as 80% – meaning most of the supply air goes to the cold end, but the temperature drop isn’t as high.  Our 3400 Series Vortex Tubes are for 20-50% Cold Fractions, and the 3200 Series are for 50-80% Cold Fractions.  Both extremes, and all points in between, are used, depending on the nature of the applications.  Here are some examples:

EXAIR 3400 Series Vortex Tubes, for air as low as -50°F.

A candy maker needed to cool chocolate that had been poured into small molds to make bite-sized, fun-shaped, confections.  Keeping the air flow low was critical…they wanted a nice, smooth surface, not rippled by a blast of air.  A pair of Model 3408 Small Vortex Tubes set to a 40% Cold Fraction produce a 3.2 SCFM cold flow (feels a lot like when you blow on a spoonful of hot soup to cool it down) that’s 110°F colder than the compressed air supply…or about -30°F.  It doesn’t disturb the surface, but cools & sets it in a hurry.  They could turn the Cold Fraction down all the way to 20%, for a cold flow of only 1.6 SCFM (just a whisper, really,) but with a 123°F temperature drop.

Welding and brazing are examples of applications where higher flows are advantageous.  The lower temperature drop doesn’t make all that much difference…turns out, when you’re blowing air onto metal that’s been recently melted, it doesn’t seem to matter much if the air is 20°F or -20°F, as long as there’s a LOT of it.  Our Medium Vortex Tubes are especially popular for this.  An ultrasonic weld that seals the end of a toothpaste tube, for example, is done with a Model 3215 set to an 80% Cold Fraction (12 SCFM of cold flow with a 54°F drop,) while brazing copper pipe fittings needs the higher flow of a Model 3230: the same 80% cold fraction makes 24 SCFM cold flow, with the same 54°F temperature drop.

Regardless of which model you choose, the temperature drop of the cold air flow is determined by only two factors: Cold Fraction setting, and compressed air supply pressure.  If you were wondering where I got all the figures above, they’re all from the Specification & Performance charts published in our catalog:

3200 Series are for max cooling (50-80% Cold Fractions;) 3400’s are for max cold temperature (20-50% Cold Fractions.)
Chocolate cooling in brown; welding/brazing in blue.

EXAIR Vortex Tubes & Spot Cooling Products are a quick & easy way to supply a reliable, controllable flow of cold air, on demand.  If you’d like to find out more, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Adjustable Spot Cooler Keeps Rollers Rolling

A manufacturer of automotive power transmission shafts was experiencing frequent failure of high pressure plastic rollers on their spin tester.  There are four rollers in a 90° array that center the shaft during spin testing.  They exert a pressure of around 1,500psi onto the shaft while it’s rotating at 1,000rpm.  This generates enough heat to actually melt the rubber coating on rollers, which means stopping testing (which holds up production) while they change out the rollers.  Just for it to start all over again.

This, of course, was an ideal application for a Vortex Tube cooling solution.  They wanted to aim the cold air flow from the dual points of two Model 3925 Adjustable Spot Cooler Systems at four points of the shaft, right where it starts to contact the rollers.

Model 3925 Adjustable Spot Cooler System has a Dual Outlet Hose Kit for distribution of cold air flow to two points.

Thing was, they wanted to mount the Adjustable Spot Coolers where they could have access to the Temperature Control Valve, but the cold air Hose Kit wouldn’t reach the shaft.  So they got a couple of extra sections of the cold air hose…they needed one section of the ‘main’ (shown circled in blue, below) to reach into the test rig’s shroud, and two sections of the ‘branch’ (circled in green) to reach to each roller.

If you need a little extra reach from an Adjustable Spot Cooler or a Cold Gun, the cold air hose segments snap together, and apart, for any length you need.

Now, adding too much hose length will start to put line loss on the cold air flow, and it will pick up heat from the environment.  But if you just need that extra foot of hose to get the job done, this generally works just fine.  The extra foot or so they’ve added (5″ to the main and 6″ to each branch) has solved their problem…they haven’t had to replace a roller since the Adjustable Spot Cooler Systems were installed.

If you’d like to find out more about how EXAIR Vortex Tubes & Spot Cooling Products can prevent heat damage in your operation, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook



Applying a Vortex Tube and Adjusting Temperature

Throughout my tenure with EXAIR there are may days where I have tested different operating pressure, volumetric flow rates, back pressures, lengths of discharge tubing, generator compression, and even some new inquiries with cold air distribution all on a vortex tube.  These all spawn from great conversations with existing customers or potential customers on different ways to apply and applications for vortex tubes.

Many of the conversations start in the same spot… How exactly does this vortex tube work, and how do I get the most out of it?  Well, the answer is never the same as every application has some variation.  I like to start with a good idea of the area, temperatures, and features of exactly what we are trying to cool down.  The next step is learning how fast this needs to be done.  That all helps determine whether we are going to be looking at a small, medium, or large vortex tube and which cooling capacity to choose.   After determining these factors the explanation on how to adjust the vortex tube to meet the needs of the application begins.

This video below is a great example of how a vortex tube is adjusted and what the effects of the cold fraction have and just how easy it is to adjust.  This adjustment combined with varying the air pressure gives great versatility within a single vortex tube.

The table below showcases the test points that we have cataloged for performance values.  As the video illustrates, by adjusting the cold fraction lower, meaning less volumetric flow of air is coming out of the cold side and more is exhausting out the hot side, the colder the temperature gets.

EXAIR Vortex Tube Performance Chart

This chart helps to determine the best case scenario of performance for the vortex tube.  Then the discussion leads to delivery of the cold or hot air onto the target.  That is where the material covered in these two blogs, Blog 1, Blog 2 comes into play and we get to start using some math.  (Yes I realize the blogs are from 2016, the good news is the math hasn’t changed and Thermodynamics hasn’t either.)  This then leads to a final decision on which model of vortex tube will best suit the application or maybe if a different products such as a Super Air Amplifier (See Tyler Daniel’s Air Amplifier Cooling Video here.)is all that is needed.

Where this all boils down to is, if you have any questions on how to apply a vortex tube or other spot cooling product, please contact us.  When we get to discuss applications that get extremely detailed it makes us appreciate all the testing and experience we have gained over the years.  Also, it helps to build on those experiences because no two applications are exactly the same.

Brian Farno
Application Engineer


The Scientific Legacy of James Clerk Maxwell

On June 13, 1831 at 14 India Street, in Edinburgh Scotland James Clerk Maxwell was born. From a young age his mother recognized the potential in James, so she took full responsibility of his early education. At the age of 8 is mother passed away from abdominal cancer, so his father enrolled him in the very prestigious Edinburgh Academy.


James was fascinated by geometry at a early age, many times learning something before he was instructed. At the age of 13 he won the schools mathematical medal and first prize in both English and poetry. At the age of 16 he starting attending classes at the University of Edinburgh, and in 1850 he enrolled at the University of Cambridge.



The largest impact he had on science were his discovery’s around the relationship between electricity, magnetism, and light. Even Albert Einstein credited him for laying the ground work for the Special Theory of Relativity. He said his work was “the most profound and the most fruitful that physics has experienced since the time of Newton.”

Maxwell also had a strong interest in color vision, he discovered how to take color photographs by experimenting with light filters.

But here at EXAIR we are very interested in his work on the theory that a “friendly little demon” could somehow separate gases into hot and cold flows, while unproven in his lifetime, did actually come to fruition by the development of the Vortex Tube.  Which does just that.

How A Vortex Tube Works

So here’s to you, James Clerk Maxwell…may we continue to recognize your brilliance, and be inspired by your drive to push forward in scientific developments.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS


Photo credit to trailerfullofpix & dun_deagh