A Cold Winter’s Chill and Vortex Tubes

Two weekends ago I had the pleasure of flying out to meet my friend in Colorado Springs and ski the weekend at Breckenridge. As an avid skier Breckenridge has been one of the resorts I have been wanting to ski since I started skiing out west. The weather was amazing and I couldn’t ask for better; the Saturday blue skies and cool breeze followed up by a Sunday of snow fall. The Trip was a dream come true. Breckenridge is specifically known for having high winds that howl across the peaks that stand at a max of 12,998 ft. above sea level. These chilling winds would freeze just about anyone if you aren’t dressed prepared for them as they blow right in your face on the lift. As I was sitting on the lift with these cold winds blowing in my face it brought to mind EXAIR’s Vortex Tubes, Cold Guns, and Cabinet Coolers.

EXAIR’s Vortex Tubes and similar products provide everything from a cool blast of air to a frigid breeze to cool off various parts and products. In a lot of smaller milling and grinding applications the Cold Gun has been used as a replacement to costly coolant-based alternatives. Vortex tubes have been used in cooling applications since 1945 and assist in everything from stress testing electronics to cooling down plastic parts during ultrasonic welding.

 Vortex tubes use a source of compressed air to create a hot and cold stream of air coming out on opposite ends of the device. This means that not only can the vortex tube be used for cooling but also heating applications. In one case a vortex tube was used to heat up an adhesive before it was sealed to get a better adhesion. Although the vortex tube can be used for heating purposes those applications are few and far between as usually a heating element or other heating source is more applicable.
Vortex tubes are quickly adjustable, just as the winds of Breckenridge can change from being a breeze to almost blowing you off of the mountain. Weather in the mountains is always varying and so are EXAIR’s Vortex Tubes.

If you have any questions or want more information on how we use our vortex tubes to improve processes all over industry. Give us a call, we have a team of application engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

 

How it Works: Theory Behind the Vortex Tube

What is a vortex tube and how does it work? A vortex tube is a device used to separate compressed air into a cold and hot stream of air; but the main question that many people have theorized is how does this device work.

In 1928 George Ranque, a French physics student stumbled upon this phenomenon on accident while he was performing experiments on a vortex type pump. During the experiment George noticed that hot air was being exhausted from one side and the other side was producing cold air. Eventually the device was forgotten about until 1945 when the German physicist, Rudolph Hilsch published a paper describing the device, eventually causing it to gain popularity and find applications in the industrial world.

EXAIR’s Vortex Tube uses compressed air as the supply and contains no moving parts to create a cold and hot stream of air from either end of the device. Using the valve located on the hot stream the vortex tube can achieve temperatures as low as -50°F (-46°C) and temperatures as high as 260°F (127°C).

The diagram bellow is one of the widely accepted explanations for the vortex tube phenomenon.

When the vortex tube is supplied with compressed air the air flow is directed into the generator that causes spin into a spiraling vortex at around 1,000,000 rpm. This spinning vortex flows down the neck of the hot tube denoted in the diagram as red. The control valve located on the end of the hot tube allows a fraction of the hot air to escape and what does not escape reverses direction and travels back down the tube in a second vortex denoted in blue. Inside of the low-pressure area of the larger outer warm air vortex, the inner vortex loses heat as it flows back to the front of the vortex and as it exits the vortex expels cold air.

The phenomenon is theorized to occur because both the hot and cold streams rotate at the same velocity and direction. This means that a particle of air in the inner vortex makes a complete revolution in the same time that a particle in the outer vortex takes to make a complete revolution. This effect is known as the principle of conservation of momentum and is the main driving force behind the vortex tube. In order for the system to stay in equilibrium air particles lose energy, in the form of heat, as they move from the outer stream to the inner stream, creating the cold air vortex that gets expelled.

At EXAIR we have harnessed many uses of vortex tubes for your cooling needs. Both our Cabinet Coolers and our Adjustable Spot Coolers utilize the vortex tube to either cool down an overheated cabinet or provide spot cooling for many different applications including to replace a messy coolant system for small grinding and machining applications.              

If you have questions about Vortex Tubes, or would like to talk about any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.   

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook