Intelligent Compressed Air: What You Need To Know About Membrane Dryers

After nitrogen and oxygen, water vapor is the third most abundant (by percentage) component of air. Because of the numerous problems that moisture causes in compressed air systems, it’s critical to have measures in place to remove it. That’s why any industrial air compressor will be equipped with a dryer.

There are a number of dryer types to choose from, all with their own “pros & cons” based on variables such as compressor size, installation environment, and specifics of what the compressed air is going to be used for.

Membrane dryers are among the newest technologies used in compressed air treatment. They work by osmosis…that’s the principle by which a selectively permeable membrane will allow some stuff (but not all stuff) to pass through. In biology, it’s how:

  • The cells in a plant’s roots draw moisture from soil.
  • Your blood picks up oxygen from your lungs & nutrients from your digestive system and delivers it to your organs.
  • Placing the textbook under your pillow tonight transfers information you’ll need for the big exam tomorrow into your brain.

OK; that last one isn’t true, and you’d know that if you’d read the textbook. In addition to the natural world, the principle is also exploited in industry for commercial gain:

  • Desalination and purification of water.
  • Nitrogen generation.
  • Removing water and water vapor from compressed air.

For the purposes of today’s blog, that last one is the one we’re interested in. The construction of a membrane dryer consists of a cylinder filled with tiny polymer tubes with a special coating on their inner walls…this is the membrane itself, which lets the water pass through, via the abovementioned principle of selective permeation.

As compressed air enters the cylinder, it’s directed through the polymer tubes, which allow water (but not air) to pass through their walls due to the difference in partial pressure between the gases (e.g., compressed air & water vapor) on the inside, & outside, of the tubes. Air flow, traveling in the opposite direction outside the tubes, sweeps the water out. The higher the sweep air flow rate, the lower the dew point of the compressed air out.

Membrane dryers have no moving parts, and use no electricity…their only utility load is the compressed air consumption of the sweep (also called “purge”) air flow. This is noteworthy, as it can be as high as 15-20% of the compressed air flow, if maximum dew point suppression is desired.

Due to their simple & compact design, they’re among the easiest dryers to install, and they’re unaffected by environmental contamination & ambient temperature. They are, however, quite sensitive to internal contamination. Membrane dryer systems typically incorporate a proprietary filtration system to remove oil/oil vapor and fine particulates from the compressed air flow.

The biggest limitation of a membrane dryer is their flow capacity – they’re going to max out at about 200 SCFM, so they’re best suited to small-to-mid size systems. If a particular area of the facility requires a lower dew point than the rest of the plant, a membrane dryer is definitely worth a look. That’s an ideal fit for its “pros”:

  • Low capital, and operating costs.
  • Ease of installation, even in a compact space
  • Maintenance free

And the “cons” are minimalized:

  • Purge air flow has to be a higher percentage of total flow for lower dew point, but it’s a percentage of a specific area’s air flow, not the whole system.
  • Lower total air flow means smaller/less expensive filtration.

EXAIR Corporation wants to help you get the most out of your compressed air system. If you’d like to find out more, give me a call.

Russ Bowman, CCASS

Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Membrane Dryer Schematic – From Compressed Air Challenge, Best Practices for Compressed Air Systems, Second Edition

Air Compressor System photo courtesy of thomasjackson1345 Creative Commons Attribution-NoDerivs 2.0 Generic (CC BY-ND 2.0)

Compressed Air Membrane Dryers: What are They? How do They Work?

A critical component on the supply side of your compressor system is the dryer. Atmospheric air contained within a compressed air system contains water vapor. The higher the temperature of the air, the more volume of moisture that air is capable of holding. As air is cooled, this water vapor can no longer be contained and this water falls out in the form of condensation. The temperature where this water will drop out is referred to as the dew point.

At a temperature of 75°F and 75% relative humidity, approximately 20 gallons of water will enter a 25HP compressor during a 24-hour period. As air is compressed, this water becomes concentrated. Since it’s heated during the compression process, this water stays in a vapor form. When this air cools further downstream, this vapor condenses into droplet form.

Moisture within the compressed air system can result in rust forming on the inside of the distribution piping, process failure due to clogged frozen lines in colder weather, false readings from instruments and controls, as well as issues with the point of use products installed within the system.

The solution to this problem is to install a dryer system. We’ve spent some time here on the EXAIR blog reviewing refrigerant dryers , desiccant dryersdeliquescent dryers, and heat of compression dryers. For the purposes of this blog, I’m going to focus on one of the newer styles on the market today: the membrane dryer.

Membrane Dryer

In a membrane dryer, compressed air is forced through a specially designed membrane that permits water vapor to pass through faster than the air. The water vapor is then purged along with a small amount of air while the rest of the compressed air passes through downstream. Generally, the dew point after the membrane dryer is reduced to about 40°F with even lower dew points also possible down to as low as -40°F!

With such low dew points possible, it makes a membrane dryer an optimal choice in outdoor applications that are susceptible to frost in colder climates. Membrane dryers also are able to be used in medical and dental applications where consistent reliability is critical.

A membrane dryer does not require a source of electricity in order to operate. The compact size makes it simple to install without requiring a lot of downtime and floor space. Since they have no moving parts, maintenance needed is minimal. Most often, this maintenance takes the form of checking/replacing filter elements just upstream of the membrane dryer. The membrane itself does need to be periodically replaced, an indicator on the membrane dryer will display when it needs to be changed. If particular instruments or processes in your facility are sensitive to moisture, a membrane dryer might be the best option.

However, there are some drawbacks to these types of dryers. They’re limited to low capacity installations, with models ranging from less than 1 SCFM up to 200 SCFM. This makes them more applicable for point-of-use installations than for an entire compressed air system. The nature in which the membrane dryer works necessitates some of the air to be purged out of the system along with the moisture. To achieve dew points as low as -40°F, this can equate to as much as 20% of the total airflow. When proper filtration isn’t installed upstream, oils and lubricants can ruin the dryer membrane and require premature replacement.

Make sure and ask plenty of questions of your compressor supplier during installation and maintenance of your system so you’re aware of the options out there. You’ll of course want to make sure that you’re using this air efficiently. For that, EXAIR’s wide range of engineered Intelligent Compressed Air Products fit the bill. With a variety of products available for same-day shipment from stock, we’ve got you covered.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

What Are Compressed Air Dryers and Why are They Necessary?

desiccant-dryer

When we talk with customers about their EXAIR Products, we also discuss the quality of their compressed air. Many of our products have no moving parts and are considered maintenance-free when supplied with clean, dry compressed air. One of the most critical aspects of a compressed air distribution system is the dryer.

No matter where you are in the world, the atmospheric air will contain water vapor. Even in the driest place in the world, McMurdo Dry Valley in Antartica, there is some moisture in the air. As this air cools to the saturation point, also known as dew point, the vapor will condense into liquid water. The amount of this moisture will vary depending on both the ambient temperature and the relative humidity. According to the Compressed Air Challenge, a general rule of thumb is that the amount of moisture air can hold at a saturated condition will double for every increase of 20°F. In regions or periods of warmer temperatures, this poses an even greater problem. Some problems that can be associated with moisture-laden compressed air include:

  • Increased wear of moving parts due to removal of lubrication
  • Formation of rust in piping and equipment
  • Can affect the color, adherence, and finish of paint that is applied using compressed air
  • Jeopardizes processes that are dependent upon pneumatic controls. A malfunction due to rust, scale, or clogged orifices can damage product or cause costly shutdowns
  • In colder temperatures, the moisture can freeze in the control lines

In order to remove moisture from the air after compression, a dryer must be installed at the outlet of the compressor. There are three primary types of dryers used in the compressor industry: refrigerant, desiccant, and membrane. Each style has it’s own inherent applications and benefits.

Refrigerant type dryers cool the air, removing the condensed moisture before allowing it to continue through the distribution system. These will generally lower the dew point of the air to 35-40°F which is sufficient for most applications. So long as the temperature in the facility never dips below the dew point, condensation will not occur. Typical advantages of a refrigerant dryer include: low initial capital cost, relatively low operating cost, and low maintenance costs. This makes them a common solution used in an industrial compressed air system.

Another type of dryer is the desiccant dryer. I’m sure you’ve seen the small “Do Not Eat” packages that are included in a variety of food products, shoes, medications, etc. These are filled with a small amount of desiccant (typically silica gel) that is there to absorb any moisture that could contaminate the product. In a desiccant dryer, the same principle applies. The compressed air is forced through a “tower” that is filled with desiccant. The moisture is removed from the air supply and then passed into the distribution system. One minor drawback with a desiccant type dryer is that the desiccant material does have to periodically be replaced. Desiccant dryers can also be used in addition to a refrigerant dryer for critical applications that require all water vapor to be removed.

The third type of dryer is the membrane dryer. In this style, extremely low dew points are able to be achieved. This makes them the optimal choice for outdoor applications where the air could be susceptible to frost in colder climates. They are also ideal for medical and dental applications where consistent reliability and air quality is an absolute must. A membrane dryer does not require a source of electricity to operate and its compact size allows it to be easily installed with minimal downtime and floor space. Maintenance is minimal and consists of periodic replacement of the membrane. While they are good for some applications, they do come with limitations. They do limit the capacity of the system with variations ranging from as little as 1 SCFM to 200 SCFM. Because of this, they’re often used as a point-of-use dryer for specific applications rather than an entire compressed air system. Some of the compressed air must be purged with along with the moisture which consumes excess compressed air.

Regardless of what products you’re using at the point-of-use, a dryer is undoubtedly a critical component of that system. Delivering clean, dry air to your EXAIR Products or other pneumatic devices will help to ensure a long life out of your equipment.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Intelligent Compressed Air: Membrane Dryers

A critical component on the supply side of your compressor system is the dryer. Atmospheric air contained within a compressed air system contains water vapor. The higher the temperature of the air, the more volume of moisture that air is capable of holding. As air is cooled, this water vapor can no longer be contained and this water falls out in the form of condensation. The temperature where this water will drop out is referred to as the dew point.

At a temperature of 75°F and 75% relative humidity, approximately 20 gallons of water will enter a 25HP compressor during a 24-hour period. As air is compressed, this water becomes concentrated. Since it’s heated during the compression process, this water stays in a vapor form. When this air cools further downstream, this vapor condenses into droplet form.

Moisture within the compressed air system can result in rust forming on the inside of the distribution piping, process failure due to clogged frozen lines in colder weather, false readings from instruments and controls, as well as issues with the point of use products installed within the system.

The solution to this problem is to install a dryer system. We’ve spent some time here on the EXAIR blog reviewing refrigerant dryers , desiccant dryers, deliquescent dryers, and heat of compression dryers. For the purposes of this blog, I’m going to focus on one of the newer styles on the market today: the membrane dryer.

Membrane Dryer

In a membrane dryer, compressed air is forced through a specially designed membrane that permits water vapor to pass through faster than the air. The water vapor is then purged along with a small amount of air while the rest of the compressed air passes through downstream. Generally, the dew point after the membrane dryer is reduced to about 40°F with even lower dew points also possible down to as low as -40°F!

With such low dew points possible, it makes a membrane dryer an optimal choice in outdoor applications that are susceptible to frost in colder climates. Membrane dryers also are able to be used in medical and dental applications where consistent reliability is critical.

A membrane dryer does not require a source of electricity in order to operate. The compact size makes it simple to install without requiring a lot of downtime and floor space. Since they have no moving parts, maintenance needed is minimal. Most often, this maintenance takes the form of checking/replacing filter elements just upstream of the membrane dryer. The membrane itself does need to be periodically replaced, an indicator on the membrane dryer will display when it needs to be changed. If particular instruments or processes in your facility are sensitive to moisture, a membrane dryer might be the best option.

However, there are some drawbacks to these types of dryers. They’re limited to low capacity installations, with models ranging from less than 1 SCFM up to 200 SCFM. This makes them more applicable for point-of-use installations than for an entire compressed air system. The nature in which the membrane dryer works necessitates some of the air to be purged out of the system along with the moisture. To achieve dew points as low as -40°F, this can equate to as much as 20% of the total airflow. When proper filtration isn’t installed upstream, oils and lubricants can ruin the dryer membrane and require premature replacement.

Make sure and ask plenty of questions of your compressor supplier during installation and maintenance of your system so you’re aware of the options out there. You’ll of course want to make sure that you’re using this air efficiently. For that, EXAIR’s wide range of engineered Intelligent Compressed Air Products fit the bill. With a variety of products available for same-day shipment from stock, we’ve got you covered.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

 

Membrane Dryer Schematic – From Compressed Air Challenge, Best Practices for Compressed Air Systems, Second Edition