Dollar Savings: Open Pipes vs EXAIR Air Nozzle

Early one morning we received a call from a local metal stamping company that had a problem. They had outstripped the volumetric capacity of their (2) 50 HP air compressors.

They were using open copper tubes to facilitate separating the part from the die on the upstroke and then blow the part backwards into the collection chute. The (5) 1/4” copper tubes were all connected to a single manifold with a valve to control each tube.  Compounding their compressed air shortage was that this setup was duplicated on approximately (8) presses.  Per the plant they run the presses for approximately (4) hours per day.  The volume of air required for one press was calculated as:

One 1/4” open copper pipe consumes 33 SCFM @ 80 PSIG, therefore:

EDV Blog.JPG

Due to the award winning design of EXAIR’s engineered air nozzles the plant achieved faster separation of the part from the die and greater efficiency moving the part to the collection chute, while averting the need to purchase a larger air compressor. They are saving air, reducing energy costs and lowering the noise level in their facility.

If you would like to discuss saving air and/or reducing noise, I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

 

 

Line Loss: What It Means To Your Compressed Air Supply Pipe, Tubing, And Hose

“Leave the gun. Take the canolli.”

“What we’ve got here is failure to communicate.”

“I’ll get you my pretty, and your little dog too!”

“This EXAIR 42 inch Super Air Knife has ¼ NPT ports, but the Installation and Operation Instructions recommend feeding it with, at a minimum, a ¾ inch pipe…”

If you’re a movie buff like me, you probably recognize 75% of those quotes from famous movies. The OTHER one, dear reader, is from a production that strikes at the heart of this blog, and we’ll watch it soon enough. But first…

It is indeed a common question, especially with our Air Knives: if they have 1/4 NPT ports, why is such a large infeed supply pipe needed?  It all comes down to friction, which slows the velocity of the fluid all by itself, and also causes turbulence, which further hampers the flow.  This means you won’t have as much pressure at the end of the line as you do at the start, and the longer the line, the greater this drop will be.

This is from the Installation & Operation Guide that ships with your Super Air Knife. It’s also available from our PDF Library (registration required.)

If you want to do the math, here’s the empirical formula.  Like all good scientific work, it’s in metric units, so you may have to use some unit conversions, which I’ve put below, in blue (you’re welcome):

dp = 7.57 q1.85 L 104 / (d5 p)

where:

dp = pressure drop (kg/cm2) 1 kg/cm2=14.22psi

q = air volume flow at atmospheric conditions (FAD, or ‘free air delivery’) (m3/min) 1 m3/min = 35.31 CFM

L = length of pipe (m) 1m = 3.28ft

d = inside diameter of pipe (mm) 1mm = 0.039”

p = initial pressure – abs (kg/cm2) 1 kg/cm2=14.22psi

Let’s solve a problem:  What’s the pressure drop going to be from a header @80psig, through 10ft of 1″ pipe, feeding a Model 110084 84″ Aluminum Super Air Knife (243.6 SCFM compressed air consumption @80psig)…so…

q = 243.6 SCFM, or 6.9 m3/min

L = 10ft, or 3.0 m

d = 1″, or 25.6 mm

p = 80psig, or 94.7psia, or 6.7 kg/cm2

1.5 psi is a perfectly acceptable drop…but what if the pipe was actually 50 feet long?

Again, 1.5 psi isn’t bad at all.  8.2 psi, however, is going to be noticeable.  That’s why we’re going to recommend a 1-1/4″ pipe for this length (d=1.25″, or 32.1 mm):

I’m feeling much better now!  Oh, I said we were going to watch a movie earlier…here it is:

If you have questions about compressed air, we’re eager to hear them.   Call us.

Russ Bowman
Application Engineer
Find us on the Web 
Follow me on Twitter 
Like us on Facebook

Flat Super Air Nozzles – Quiet and Forceful and Adjustable

The 2″ Flat Super Air Nozzle is a very powerful yet quiet engineered nozzle.  Operation at 80 PSIG of compressed air pressure yields a strong 1.38 lb. of force, at only 77 dBA of sound level.  Compare this with many of the plastic flat nozzles that blow air through a series of holes, with sound levels ranging form 78-83 dBA, not to mention some might violate the OSHA dead ended pressure standard and results in fines being levied.

The patented technology utilizes a changeable shim to generate the high flow of air in a smooth and laminar flow, to keep noise down and power and strength up. With (6) stainless steel shim thicknesses available, the 2″ Flat Super Air Nozzle offers a very flexible package that can be set and tuned to meet exacting performance criteria, while using the minimum amount of compressed air, and at the quietest possible sound levels.

2 Inch Flat
2″ Flat Super Air Nozzle

The model 1122 is offered in a zinc aluminum alloy body and cap, and the 1122SS is constructed from type 316 stainless steel.  All shims are stainless steel. The shim thickness for the 1122/1122SS is 0.015″ thick.

Also available, for extra blowing force, are the HP1125 and HP1125SS.  The nozzles utilize the same zinc aluminum alloy or stainless steel body and cap and have the 0.025″ shim installed – and deliver 2.2 lbs of force, while only increasing sound levels to 83 dBA.

Shim sets for any of the 2″ Flat Super Air Nozzles are available.  The 1132SS shim set includes shims of thickness of 0.005″, 0.10″, and 0.020″.  For higher force levels, the HP1132SS shim set includes the 0.020″ and 0.030″ shims.

1132ss
Shims are available, from 0.005″ up to 0.030″ for maximum versatility and performance tuning

As you can see- for a versatile, forceful and quiet engineered air nozzle, it is hard to beat the EXAIR 2″ Flat Super Air Nozzle.  If a 1″ wide nozzle better suits your needs, the same flexibility and power can be found in the 1″ Flat Super Air Nozzle as well.  Check it out as well.

If you would like to talk about Flat Super Air Nozzles or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Custom Solution From Stock For A Pick And Place Application

Even if you’re just a casual, infrequent reader of our blogs, you likely know that EXAIR Corporation is proud of our abilities to customize solutions for “out of the box” compressed air product applications. Oftentimes, this is offered as a custom engineered product, developed from a user’s specifications when one of our stock products just won’t work for one reason or another. For instance, when an exotic material of construction is required for heat or corrosion concerns, a special length or size is needed for space constraints, etc.

An Air Amplifier with a PTFE plug (left,) a curved Super Air Knife (center,) and a flanged Line Vac are just a few ways EXAIR has provided custom solutions.

Other times, though, we can use a stock product for something other than what everyone else uses it for.  We’ve sold Air Amplifiers for use in vacuum chucking, and pick-and-place applications – those are normally the realm of our E-Vac Vacuum Generators.  Speaking of E-Vacs, they’ve been used to deflate basketballs.

And speaking of E-Vacs (still,) I had the pleasure of helping a long-time customer solve a new problem in their growing manufacturing business.  They put their consumer products in blister packages, and recently converted one of the lines that picks & places the plastic “blister” onto the cardboard “backer” from two at a time, to six at a time.  They were using a Model 810003M E-Vac High Vacuum Generator, which worked fine, every time, with two Model 900762 1″ x 1/2″ Oval Vacuum Cups, but when they put four more of those Vacuum Cups on, they weren’t able to pick all six “blisters” every time.

These plastic blisters are smooth and non-porous, so this a “textbook” application for a High Vacuum Generator.  They’re also VERY lightweight, and were picked in a horizontal motion, so the 27″Hg that the Model 810003M can generate wasn’t actually necessary.  By replacing it with a Model 800003M E-Vac Low Vacuum Generator, the extra vacuum flow solved the problem, with no increase in compressed air consumption, which was critical for this area of their operation.

EXAIR E-Vac Vacuum Generators and Vacuum Cups are a reliable, low cost solution for most any pick & place application.

EXAIR Intelligent Compressed Air Products can solve many of your industrial/commercial challenges.  Our catalog documents the ones they’re aimed at.  Others need to be addressed by knowledge and experience…and maybe a little theory to practice.  If that’s the case, call an EXAIR Application Engineer.  We’re here to help, and we’re pretty good at it.

Intelligent Compressed Air: Distribution Piping

air compressor

An important component of your compressed air system is the distribution piping. The piping will be the “veins” that connect your entire facility to the compressor. Before installing pipe, it is important to consider how the compressed air will be consumed at the point of use. Some end use devices must have adequate ventilation. For example, a paint booth will need to be installed near an outside wall to exhaust fumes. Depending on the layout of your facility, this may require long piping runs.  You’ll need to consider the types of fittings you’ll use, the size of the distribution piping, and whether you plan to add additional equipment in the next few years. If so, it is important that the system is designed to accommodate any potential expansion. This also helps to compensate for potential scale build-up (depending on the material of construction) that will restrict airflow through the pipe.

The first thing you’ll need to do is determine your air compressor’s maximum CFM and the necessary operating pressure for your point of use products. Keep in mind, operating at a lower pressure can dramatically reduce overall operating costs. Depending on a variety of factors (elevation, temperature, relative humidity) this can be different than what is listed on directly on the compressor. (For a discussion of how this impacts the capacity of your compressor, check out one of my previous blogs – Intelligent Compressed Air: SCFM, ACFM, ICFM, CFM – What do these terms mean?) Once you’ve determined your compressor’s maximum CFM, draw a schematic of the necessary piping and list out the length of each straight pipe run. Determine the total length of pipe needed for the system. Using a graph or chart, such as this one from Engineering Toolbox. Locate your compressor’s capacity on the y-axis and the required operating pressure along the x-axis. The point at which these values meet will be the recommended MINIMUM pipe size. If you plan on future expansion, now is a good time to move up to the next pipe size to avoid any potential headache.

Once you’ve determined the appropriate pipe size, you’ll need to consider how everything will begin to fit together. According to the “Best Practices for Compressed Air Systems” from the Compressed Air Challenge, the air should enter the compressed air header at a 45° angle, in the direction of flow and always through wide-radius elbows. A sharp angle anywhere in the piping system will result in an unnecessary pressure drop. When the air must make a sharp turn, it is forced to slow down. This causes turbulence within the pipe as the air slams into the insides of the pipe and wastes energy. A 90° bend can cause as much as 3-5 psi of pressure loss. Replacing 90° bends with 45° bends instead eliminates unnecessary pressure loss across the system.

Pressure drop through the pipe is caused by the friction of the air mass making contact with the inside walls of the pipe. This is a function of the volume of flow through the pipe. Larger diameter pipes will result in a lower pressure drop, and vice versa for smaller diameter pipes. The chart below from the “Compressed Air and Gas Institute Handbook” provides the pressure drop that can be expected at varying CFM for 2”, 3”, and 4” ID pipe.

pressure drop in pipe

You’ll then need to consider the different materials that are available. Some different materials that you’ll find are: steel piping (Schedule 40) both with or without galvanizing, stainless steel, copper, aluminum, and even some plastic piping systems are available.

While some companies do make plastic piping systems, plastic piping is not recommended to be used for compressed air. Some lubricants that are present in the air can act as a solvent and degrade the pipe over time. PVC should NEVER be used as a compressed air distribution pipe. While PVC piping is inexpensive and versatile, serious risk can occur when using with compressed air. PVC can become brittle with age and will eventually rupture due to the stress. Take a look at this inspection report –  an automotive supply store received fines totaling $13,200 as a result of an injury caused by shrapnel from a PVC pipe bursting.

Steel pipe is a traditional material used in many compressed air distribution systems.  It has a relatively low price compared to other materials and due to its familiarity is easy to install. It’s strong and durable on the outside. Its strength comes at a price, steel pipe is very heavy and requires anchors to properly suspend it. Steel pipe (not galvanized) is also susceptible to corrosion. This corrosion ends up in your supply air and can wreak havoc on your point-of-use products and can even contaminate your product. While galvanized steel pipe does reduce the potential for corrosion, this galvanizing coating can flake off over time and result in the exact same potential issues. Stainless Steel pipe eliminates the corrosion and rusting concerns while still maintaining the strength and durability of steel pipe. They can be more difficult to install as stainless steel pipe threads can be difficult to work with.

Copper piping is another potential option. Copper pipe is corrosion-free, easy to cut, and lightweight making it easy to suspend. These factors come at a significant increase in costs, however, which can prevent it from being a suitable solution for longer runs or larger ID pipe installations. Soldering of the connecting joints can be time consuming and does require a skilled laborer to do so, making copper piping a mid-level solution for your compressed air system.

Another lightweight material that is becoming increasingly more common in industry is aluminum piping. Like copper, aluminum is lightweight and anti-corrosion. They’re easy to connect with push-to-lock connectors and are ideal for clean air applications. Aluminum pipe remains leak-free over time and can dramatically reduce compressed air costs. While the initial cost can be high, eliminating potential leaks can help to recoup some of the initial investment. Aluminum pipe is also coated on the inside to prevent corrosion. While an aluminum piping system may be the most expensive, its easy installation and adaptability make it an excellent choice.

It can be easy to become overwhelmed with the variety of options at your disposal. Your facility layout, overall budget, and compressed air requirements will allow you to make the best choice. Once you’ve selected and installed your distribution piping, look to the EXAIR website for all of your point-of-use compressed air needs!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Basics of Static Electricity

Here in the Northern Hemisphere, we are in the middle of winter and that means extremely dry air, and frequent shocks when reaching for a door knob after walking across a carpeted surface.  While a shock is mildly uncomfortable and can be annoying to us, the presence of static electricity in an industrial manufacturing process can be much more problematic.

Problems that static cause range from operator discomfort to increased downtime to quality issues.  Dust can cling to product, product can cling to itself, rollers, frames, or conveyors. Materials may tear, jam, curl and sheet fed items can stick and mis-feed. Hazardous sparks and shocks can occur, possibly damaging sensitive electronics.

EXAIR has put together a useful tool, the Basics of Static Electricity white paper with Interactive Regions to help a person learn more about static.

Basics of Static Electricity

 

Topics covered include Electron Theory, Causes of Static Electricity, Triboelectric Series chart, and Types of Static Generation.  Also, the white paper covers the areas of How to Control Static Charge Buildup, Determining the Source of the Static Buildup, Eliminating or Minimizing the Source Causing the Buildup, and Treating Static Buildup.

The Treating Static Buildup is a comprehensive review of the EXAIR Static Elimination products and how each technology is best applied to different processes and applications.

To receive your copy of the Basics of Static Electricity white paper, click the photo above or the link here.

If you would like to talk about static electricity or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

More Efficient Compressed Air Use Could Lead To Energy Rebates

The use of compressed air can be found in almost any industry and is often referred to as a “fourth utility” next to water, gas and electric. The generation of compressed air accounts for approximately 1/3 of all energy costs in an industrial facility, in many cases, it’s the largest energy user in an industrial plant. With an average cost of $ 0.25 per every 1,000 SCF used, compressed air can be expensive to produce so it is very important to use this utility as efficiently as possible.

Utility companies recognize the benefit of using engineered products to reduce compressed air usage, like the ones manufactured by EXAIR, and offers rebate incentives for making a switch. Our local utility provider here in Cincinnati, Duke Energy, offers a $ 20 incentive for each replacement engineered nozzle.

 

Our Model # 1100SS 1/4″ FNPT and Model # 1101SS 1/4″ MNPT Super Air Nozzles

In their specification, the nozzle must meet a certain volumetric flow rate (SCFM) at 80 PSIG operating pressure for a given pipe size. For example, when looking at a 1/4″ nozzle, the flow rate must be less than or equal to 17 SCFM when operated at 80 PSIG. Our most popular nozzles for “general” blowoff applications would be our Model # 1100 (1/4″ FNPT) or our Model # 1101 (1/4″ MNPT) Super Air Nozzles. These nozzles require 14 SCFM @ 80 PSIG so this would be the ideal solution to reduce the air demand and take advantage of the rebate.

Here at EXAIR, much of our focus is to improve the overall efficiency of industrial compressed air operating processes and point of use compressed air operated products. If you’d like to contact one of our application engineers, we can help recommend the proper engineered solution to not only save on your compressed air usage but also assist with possible energy rebates available in your area.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN