EXAIR Operational Status re: COVID-19 Coronavirus – update 04/03/2020

To all of our valued partners-

The US is just entering the most crucial phase of this outbreak, if the lessons of other countries are any guide.  Many of our distributor partners around the world have told us that they are facing social and business restrictions for the next 2-4 weeks as well.

The state of Ohio issued an amended order yesterday requiring most people to stay at home except for exempt activities through May 1st, 2020.  In large part, it simply extends the original stay at home order that was set to expire on Monday, April 6th.

After reading the amended order, EXAIR continues to be exempt from it as we were from the original order.  EXAIR is involved in nearly every industry listed by the Department of Homeland Security as critical industries, and those guidelines were part of the basis for the details of the order by the state of Ohio.

Many industries that we support like food, pharmaceutical, medical equipment and the like are absolutely critical right now.  Just in the past week, we have had orders and requests for technical help from customers making surgical masks, face shields and neutralizing contamination on personnel when entering a building.  At least one long-standing customer is involved with making COVID-19 test kits.  This is real and it affects all of us.

If they need us, we need to be there for them.  The Governor’s press conferences have stressed how important it is for everyone to keep supply chains moving, especially for critical industries.  EXAIR is part of that chain and will continue to do our part to the best of our collective abilities and we know our distributors around the world will continue to do the same.  Anything we can do to help with this crisis is worth doing.

At the same time, we take our responsibility to try to keep our employees healthy and safe very seriously.  We have modified our operations significantly in order to remain open to serve those who need us in a responsible manner.

  • We have divided our workforce into two different shifts, with another group working remotely.
  • Our two on-premises shifts are not in our facility at the same time
  • Common areas of our facility are sanitized between shifts and again at night
  • Personal work spaces are sanitized at the end of each shift
  • Our workstations are spread out to make sure we observe social distancing
  • We are screening all employee temperatures every day before their shifts

EXAIR operations will remain ongoing for the foreseeable future unless local conditions or government mandates require other actions.  As always, we will keep you up to date if those events occur.

Take care of yourselves and each other.

Bryan Peters

President
EXAIR Corporation

How it Works: Theory Behind the Vortex Tube

What is a vortex tube and how does it work? A vortex tube is a device used to separate compressed air into a cold and hot stream of air; but the main question that many people have theorized is how does this device work.

In 1928 George Ranque, a French physics student stumbled upon this phenomenon on accident while he was performing experiments on a vortex type pump. During the experiment George noticed that hot air was being exhausted from one side and the other side was producing cold air. Eventually the device was forgotten about until 1945 when the German physicist, Rudolph Hilsch published a paper describing the device, eventually causing it to gain popularity and find applications in the industrial world.

EXAIR’s Vortex Tube uses compressed air as the supply and contains no moving parts to create a cold and hot stream of air from either end of the device. Using the valve located on the hot stream the vortex tube can achieve temperatures as low as -50°F (-46°C) and temperatures as high as 260°F (127°C).

The diagram bellow is one of the widely accepted explanations for the vortex tube phenomenon.

When the vortex tube is supplied with compressed air the air flow is directed into the generator that causes spin into a spiraling vortex at around 1,000,000 rpm. This spinning vortex flows down the neck of the hot tube denoted in the diagram as red. The control valve located on the end of the hot tube allows a fraction of the hot air to escape and what does not escape reverses direction and travels back down the tube in a second vortex denoted in blue. Inside of the low-pressure area of the larger outer warm air vortex, the inner vortex loses heat as it flows back to the front of the vortex and as it exits the vortex expels cold air.

The phenomenon is theorized to occur because both the hot and cold streams rotate at the same velocity and direction. This means that a particle of air in the inner vortex makes a complete revolution in the same time that a particle in the outer vortex takes to make a complete revolution. This effect is known as the principle of conservation of momentum and is the main driving force behind the vortex tube. In order for the system to stay in equilibrium air particles lose energy, in the form of heat, as they move from the outer stream to the inner stream, creating the cold air vortex that gets expelled.

At EXAIR we have harnessed many uses of vortex tubes for your cooling needs. Both our Cabinet Coolers and our Adjustable Spot Coolers utilize the vortex tube to either cool down an overheated cabinet or provide spot cooling for many different applications including to replace a messy coolant system for small grinding and machining applications.              

If you have questions about Vortex Tubes, or would like to talk about any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.   

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Better Understand Your Blowoff Process with EXAIR’s FREE Efficiency Lab

panoramic view
The EXAIR Efficiency Lab

Many customers may not have the means to test the air consumption of their blowoff solutions. With compressed air being the most expensive utility in a manufacturing facility, it’s important to identify places where you can save money on your overall operating costs. EXAIR manufacturers a wide variety of products intended to help you reduce your compressed air usage. If you’re not able to accurately measure the consumption in your own shop, we invite you to send the products into EXAIR for testing. With EXAIR’s Award Winning Efficiency Lab, just simply contact an Application Engineer, box them up and send them to our warehouse in Cincinnati, Ohio.

EXAIR Efficiency Lab

Once we receive it, our engineers will complete some in-depth testing to determine the compressed air consumption, sound level, and force that your current solution provides. With this information, we’ll be able to compare it to an EXAIR Engineered Solution. This way we ensure that you receive the best, safest solution possible also capable of saving money through reduced air consumption and improved efficiency.  We’ll send you back a comprehensive report that’ll help you to make the best decision for your company.

I’ve been recently working with a customer that sent in one of the nozzles they’re using across all their CNC machines. They wanted us to test it out and see if we’re able to offer them something that could reduce their overall compressed air usage. The nozzle was one of the cheap plastic varieties and was attached to a commonly used modular hose. This type of modular hose is not designed for operating under high pressures. These hoses are more suitable for liquid coolant or air that is at or below atmospheric pressure.

IMG_7486
Inefficient and unsafe plastic nozzle

After testing, we found that at 80 psig the nozzle consumed 3.85 SCFM and produced a force of 1.92 oz. We also noticed that after 60 psig, the nozzle began to leak due to a poor seal where the nozzle met the brass hex. The EXAIR nozzle most suitable to replace this was the 1108SS. At just 2.5 SCFM at 80 psig, replacing the plastic nozzle with an engineered solution saves them 35% of their overall consumption for this blowoff. With close to 1000 of these nozzles in operation, that adds up quickly!!

In addition to increasing efficiency, replacing these nozzles also greatly increases overall worker safety. The sound level is reduced from 73 dBA to just 58 dBA and EXAIR’s nozzles also adhere to OSHA 1910.242(b). The plastic nozzles could be dead-ended, posing a hazard that can result in costly fines. These fines are assessed per infraction, so having multiple non-compliant nozzles can easily get very expensive if you’re subject to an unannounced visit by an OSHA inspector.

If you think you may have an opportunity to improve upon your existing blowoff methods, give us a call. We’ll be happy to take a closer look and have you send the product back to EXAIR for a quick trial in our Efficiency Lab. You’ll be glad you did!

Tyler Daniel
Application Engineer
E-mal: TylerDaniel@exair.com
Twitter: @EXAIR_TD