When to Use a Receiver Tank for a Compressed Air Application

Recently, I worked with a production engineer at a Tier 1 supplier for the auto industry.  An upcoming project was in the works to install a new line to produce headlight lenses.  As a part of the process, there was to be a “De-static / Blow-off” station, where a shuttle system would bring a pair of the parts to a station where they would be blown off and any static removed prior to being transferred to a painting fixture and sent off for painting.  For best results, the lenses were to be dust and lint free and have no static charge, ensuring a perfect paint result.

The customer installed a pair of 18″ Gen4 Super Ion Air Knives, to provide coverage of the widest 16″ lens assembly, that were staged in pairs.

112212
The Super Ion Air Knife Kit, and Everything that is Included.

The customer was limited in compressed air supply volume in the area of the plant where this process was to occur. 50 SCFM of 80 PSIG was the expected air availability at peak use times, which posed a problem –  the Super Ion Air Knives would need up to 105 SCFM if operated at 80 PSIG.  A further review of the design parameters for the process revealed that the system needed to blow air for only 4 seconds and would be off for 25 seconds to meet the target throughput.

This scenario lends itself perfectly to the use of a Receiver Tank.  Running all of the design numbers into the calculations, showed that the 60 Gallon Receiver Tank we offer, would allow for a 20 second run-time, and require 13.1 seconds to refill.  These figures were well within the requires times, and would allow for the system to work as needed, without having to do anything to the compressed air supply system.

receiver_tank
60 Gallon Receiver Tank

The moral of the story is – if you have a process that is intermittent, and the times for and between blow-off, drying, or cooling allows, a Receiver Tank can be used to allow you to get the most of your available compressed air system.

Note – Lee Evans wrote an easy to follow blog that details the principle and calculations of Receiver Tanks, and it is worth your time to read here.

If you would like to talk about any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

A Tale of Two Super Ion Air Knives

A manufacturer of plastic bottles had a problem with static charge. Right after the bottles are extruded and cooled, they have an apparatus that “unscrambles” them and places them, single file, onto a conveyor. It does so with some fabric belts and plastic rollers. If you know anything of static electricity, dear reader, you probably recognize that there aren’t too many better ways to generate a static charge than to rub plastic against plastic, or (even worse) plastic & fabric together.  Here’s a prime example of the kind of static charge you can get, just from unrolling plastic film.

The separation of the non-conductive surfaces (like when this plastic film is unrolled) is capable of generating an incredible amount of static charge.

Now, the bottle makers didn’t have a static meter, but they didn’t need one to know they had issues:  the bottles that the “unscrambler” was putting on the belt were still very much “scrambled.”  They installed a Model 112209 9″ GEN4 Super Ion Air Knife Kit, to blow ionized air up from under the bottles as they entered the belt conveyor, and they did see what they’d call an improvement, but not quite what they’d call a solution.

Unfortunately, dissipating the static from just about half of the surface area of the bottle was still leaving them with half a problem.  However, by adding a Model 112009 9″ GEN4 Super Ion Air Knife (the 112209 Kit’s Power Supply has two outlets, and its Filter Separator & Pressure Regulator are capable of handling the flow to two 9″ Air Knives,) they were able to blow ionized air down from the other side, and up from where the first one was installed.  A soft “breeze” was all it took…a stronger air flow would have worked against the “unscrambler” anyway…because even at very low supply pressures, the Super Ion Air Knives produce an extremely fast static dissipation rate.

Even with a 5psig supply…which makes for just a “whisper” of air flow, the EXAIR GEN4 Super Ion Air Knife eliminates a 5kV charge in under half a second.

If you’ve got problems with static charge, we’ve not only got improvements; we’ve got solutions. Give me a call to find out how we can help.

Super Air Knife Helps Plastic Injection Molder

EXAIR commonly works with plastic injection molding companies. They produce top quality plastic parts from both commodity and engineering-grade resins for many diverse industries. The customer reached out to us with a problem. A mold that they were running was having some issues. The parts were not releasing and ejecting properly, causing the need to use a mold release, which was slowing down the process by a manual operation to the process.  Also, the parts were seeing push pin marks, causing cosmetic issues with the parts.  The customer wanted to explore using compressed air to blow the parts free.

Plastic Injection Mold
Typical Plastic Injection Mold

Based on the mold size and layout, a pair of 12″ Super Air Knives was installed.  The knives are oriented to blow straight down along the face of the mold, one knife per part tree.  The strong laminar flow of air hits the parts causing them to release and drop without the use of release agents.  Also, the push pin marks are within normal standards, eliminating the the cosmetic concerns.

gh_Super Air Knife 750x696

This is just one example of how intelligently using compressed air can help improve a process.  By using air knives for wide areas or using a 1″ Flat Super Air Nozzle for very small parts, or anywhere in between, we can help to solve your part ejection issues and make your process run better, faster, and with higher quality.

1126
1″ Flat Super Air Nozzle with Changeable Shims

If you would like to talk about Super Air Knives, Flat Nozzles or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

 

Injection Mold Photo – “Creative Commons Injection Mold” by Mitch Barrie is licensed under CC BY-SA 2.0

Basics of Static Electricity

Here in the Northern Hemisphere, we are in the middle of winter and that means extremely dry air, and frequent shocks when reaching for a door knob after walking across a carpeted surface.  While a shock is mildly uncomfortable and can be annoying to us, the presence of static electricity in an industrial manufacturing process can be much more problematic.

Problems that static cause range from operator discomfort to increased downtime to quality issues.  Dust can cling to product, product can cling to itself, rollers, frames, or conveyors. Materials may tear, jam, curl and sheet fed items can stick and mis-feed. Hazardous sparks and shocks can occur, possibly damaging sensitive electronics.

EXAIR has put together a useful tool, the Basics of Static Electricity white paper with Interactive Regions to help a person learn more about static.

Basics of Static Electricity

 

Topics covered include Electron Theory, Causes of Static Electricity, Triboelectric Series chart, and Types of Static Generation.  Also, the white paper covers the areas of How to Control Static Charge Buildup, Determining the Source of the Static Buildup, Eliminating or Minimizing the Source Causing the Buildup, and Treating Static Buildup.

The Treating Static Buildup is a comprehensive review of the EXAIR Static Elimination products and how each technology is best applied to different processes and applications.

To receive your copy of the Basics of Static Electricity white paper, click the photo above or the link here.

If you would like to talk about static electricity or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

The Case For The EXAIR Super Ion Air Knife

One of the best ways, in industry, to generate a static charge is to roll or unroll non-conductive materials such as polymer films, plastic sheet, etc. It’s common to see static charges well in excess of 10,000 volts in such operations, like the one I discussed with a customer recently.

The separation of the non-conductive surfaces (like when this plastic film is unrolled) is capable of generating an incredible amount of static charge. Here are two examples showing 12,400 and 16,900 volts.

One of the best ways, in industry, to dissipate a static charge is to use ionized air.  There are different methods of doing this; one of the most popular is to effect a Corona discharge, via a high voltage, low amperage electric current.  This is precisely what EXAIR’s Static Eliminators provide: a Corona discharge produces a bulk of both (+) and (-) ions in the enormous volume of high velocity air flow generated.  When these (+) and (-) ions flow onto a surface charged with (-) and (+) ions, they cancel each other out, leaving a net neutral charge.  Static, eliminated!

THE best way to accomplish this is the EXAIR Super Ion Air Knife.

From small bottles to wide films, EXAIR Super Ion Air Knives come in a variety of lengths to meet the needs of most any static dissipation application.

By combining an Ionizing Bar with a Super Air Knife, as Super Ion Air Knife provides rapid static elimination AND blow off of any dust, chips, or debris that was being statically held.  The laminar curtain of ionized air not only maximizes the rate of static dissipation, but is also ideal for stripping/sweeping away any debris, leaving a clean, static-free surface.  No more jamming, tearing, nuisance shocks to operators, dust attraction, or any of the other host of problems associated with static electricity.

The ionized air flow can be precisely regulated to whatever level it takes to get the job done.  At 100psig, the powerful, high velocity blast will dissipate 5,000 volts of static charge in 0.18 seconds.  If the material is fragile, or if that kind of air flow might disrupt the process, it’s not a big deal…even at 5psig supply pressure, that same 5,000 volts is dissipated in 0.40 seconds.  That’s how it works on the plastic roll above – with just a whisper of ionized air flow from a Super Ion Air Knife, they consistently reduce the resultant static charge to less than 400 volts…far below the threshold for the nuisance shocks they wanted to avoid.

They’re on the shelf in lengths from 3 inches to 9 feet long, and we can make custom lengths in three days after receipt of an order.  The 115/230VAC GEN4 Power Supplies are available with 2 or 4 outlets, to energize any 2 or 4 EXAIR GEN4 Static Eliminators.

Versatile. Efficient. Effective. Quiet. Safe.  And, readily available.  If you’d like to discuss a static problem, give me a call.

Super Ion Air Knife Removes Foil Dots In Lid Cutting Operation

I recently received an inquiry from a food manufacturer about a packaging line they were having issues with.  The plant fills continuous rows of thermo-formed cups which is then sealed with a single foil lid. Once sealed, a machine cuts the row to separate the cups, which creates small scrap pieces of foil. After the cutting operation, they try to collect as much of the waste trim as possible but some small pieces of foil, they call “dots”, cling to the surface of the cup and cutter due to static charge.  The company installed a vacuum collection hood in this area, to try and help keep the foil pieces or any dust from falling onto the cup during the process. While this did help somewhat, some dots would remain and eventually fall off further down the line, making small piles that needed to be manually cleaned to avoid potential jams, which slowed down their production cycle.

The cups are filled and separated on a 44″ wide, mesh-screen conveyor with individual lanes to process multiple rows of cups. After being cut, the cups are moved to the inspection area and then packaged for shipment.  I recommended they mount a 48″ Super Ion Air Knife above and below the cups and direct the airflow to the end where the vacuum collection hood is located. The idea is, as the ions eliminate the charge, the small foil dots will release and the laminar airflow would keep the parts moving toward the vacuum hood, thus removing all foil trim and preventing any piling of trim further down the production line.

The Super Ion Air Knife produces a sheet of ionized air capable of dissipating 5 kV in just a fraction of a second!

EXAIR offers a wide selection of Static Eliminators for use in a variety of industrial processes. If you are experiencing static concerns in a particular area or to discuss a specific process, please contact an application engineer for assistance.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

Super Ion Air Knives Remove Dust from Plastic Panels

20160426_134447
Conveyor line with static dust problem

One of our distributors reached out to me this week about a static elimination application in Russia.  The end user has the setup shown above, and they are in need of a means to remove dust from the plastic panels on the conveyor.  These panels have a static charge causing ambient dust to adhere to their surfaces.

The main questions for this application were whether we could provide a solution capable of creating a static eliminating blow off for the entire width of the conveyor (approx. 54”), and whether the dust particles can be removed from the working area after removal from the plastic panels.

In order to answer the first question we first had to select a solution, and the Super Ion Air Knife is a near-perfect fit.  We can provide Super Ion Air Knives in any length up to 108”, with a stock length 54” unit available on the shelf.  This was a straightforward recommendation to remove the static from these plastic sheets – install one 111054 54” Super Ion Air Knife on the top and bottom sides of this conveyor to remove the static and blow off the dust.  But, the second question will require a more specialized solution.

When static causes dust to adhere to a surface, removal of the static charge allows the dust to fall off or be blown away, so we were confident that we can remove the static and dust.  But, we then need to vacuum these dust particles away – something we could achieve with a series of Super Air Amplifiers or Line Vacs – which will require some sort of specialized hood.  Fortunately for us, this application already has a vacuum control system with a hood (you can see this in the right side of the photo with a large plastic air duct running to the top and bottom hoods on this conveyor line).

So, problem solved!  We recommended the two Super Ion Air Knives are installed with the airflow aimed at a 45° angle of attack, opposite the direction of travel, and with the airflow aimed into these vacuum hoods.

If you have a similar application or static problem in your facility, give us a call, we’ll be happy to help.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE