When to Use a Receiver Tank for a Compressed Air Application

Recently, I worked with a production engineer at a Tier 1 supplier for the auto industry.  An upcoming project was in the works to install a new line to produce headlight lenses.  As a part of the process, there was to be a “De-static / Blow-off” station, where a shuttle system would bring a pair of the parts to a station where they would be blown off and any static removed prior to being transferred to a painting fixture and sent off for painting.  For best results, the lenses were to be dust and lint free and have no static charge, ensuring a perfect paint result.

The customer installed a pair of 18″ Gen4 Super Ion Air Knives, to provide coverage of the widest 16″ lens assembly, that were staged in pairs.

112212
The Super Ion Air Knife Kit, and Everything that is Included.

The customer was limited in compressed air supply volume in the area of the plant where this process was to occur. 50 SCFM of 80 PSIG was the expected air availability at peak use times, which posed a problem –  the Super Ion Air Knives would need up to 105 SCFM if operated at 80 PSIG.  A further review of the design parameters for the process revealed that the system needed to blow air for only 4 seconds and would be off for 25 seconds to meet the target throughput.

This scenario lends itself perfectly to the use of a Receiver Tank.  Running all of the design numbers into the calculations, showed that the 60 Gallon Receiver Tank we offer, would allow for a 20 second run-time, and require 13.1 seconds to refill.  These figures were well within the requires times, and would allow for the system to work as needed, without having to do anything to the compressed air supply system.

receiver_tank
60 Gallon Receiver Tank

The moral of the story is – if you have a process that is intermittent, and the times for and between blow-off, drying, or cooling allows, a Receiver Tank can be used to allow you to get the most of your available compressed air system.

Note – Lee Evans wrote an easy to follow blog that details the principle and calculations of Receiver Tanks, and it is worth your time to read here.

If you would like to talk about any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

A Tale of Two Super Ion Air Knives

A manufacturer of plastic bottles had a problem with static charge. Right after the bottles are extruded and cooled, they have an apparatus that “unscrambles” them and places them, single file, onto a conveyor. It does so with some fabric belts and plastic rollers. If you know anything of static electricity, dear reader, you probably recognize that there aren’t too many better ways to generate a static charge than to rub plastic against plastic, or (even worse) plastic & fabric together.  Here’s a prime example of the kind of static charge you can get, just from unrolling plastic film.

The separation of the non-conductive surfaces (like when this plastic film is unrolled) is capable of generating an incredible amount of static charge.

Now, the bottle makers didn’t have a static meter, but they didn’t need one to know they had issues:  the bottles that the “unscrambler” was putting on the belt were still very much “scrambled.”  They installed a Model 112209 9″ GEN4 Super Ion Air Knife Kit, to blow ionized air up from under the bottles as they entered the belt conveyor, and they did see what they’d call an improvement, but not quite what they’d call a solution.

Unfortunately, dissipating the static from just about half of the surface area of the bottle was still leaving them with half a problem.  However, by adding a Model 112009 9″ GEN4 Super Ion Air Knife (the 112209 Kit’s Power Supply has two outlets, and its Filter Separator & Pressure Regulator are capable of handling the flow to two 9″ Air Knives,) they were able to blow ionized air down from the other side, and up from where the first one was installed.  A soft “breeze” was all it took…a stronger air flow would have worked against the “unscrambler” anyway…because even at very low supply pressures, the Super Ion Air Knives produce an extremely fast static dissipation rate.

Even with a 5psig supply…which makes for just a “whisper” of air flow, the EXAIR GEN4 Super Ion Air Knife eliminates a 5kV charge in under half a second.

If you’ve got problems with static charge, we’ve not only got improvements; we’ve got solutions. Give me a call to find out how we can help.

Basics of Static Electricity

Here in the Northern Hemisphere, we are in the middle of winter and that means extremely dry air, and frequent shocks when reaching for a door knob after walking across a carpeted surface.  While a shock is mildly uncomfortable and can be annoying to us, the presence of static electricity in an industrial manufacturing process can be much more problematic.

Problems that static cause range from operator discomfort to increased downtime to quality issues.  Dust can cling to product, product can cling to itself, rollers, frames, or conveyors. Materials may tear, jam, curl and sheet fed items can stick and mis-feed. Hazardous sparks and shocks can occur, possibly damaging sensitive electronics.

EXAIR has put together a useful tool, the Basics of Static Electricity white paper with Interactive Regions to help a person learn more about static.

Basics of Static Electricity

 

Topics covered include Electron Theory, Causes of Static Electricity, Triboelectric Series chart, and Types of Static Generation.  Also, the white paper covers the areas of How to Control Static Charge Buildup, Determining the Source of the Static Buildup, Eliminating or Minimizing the Source Causing the Buildup, and Treating Static Buildup.

The Treating Static Buildup is a comprehensive review of the EXAIR Static Elimination products and how each technology is best applied to different processes and applications.

To receive your copy of the Basics of Static Electricity white paper, click the photo above or the link here.

If you would like to talk about static electricity or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Removing Static From Diaper Absorbent Material

This is where the absorbent material inside a disposable diaper is made

The image above shows one step in the process of disposable diaper manufacturing.  In this step of the process, the absorbent material is ground through a mill on the top of the “bunker” where it falls down a shaft and onto a mesh screen.  Once on the mesh screen, the material is repressed into the proper size and shape for placing into the diapers.

This manufacturer contacted one of our Russian distributors about the application because the milling of the absorbent material was creating static.  This static caused the material to adhere to the walls of the bunker chute and to unevenly distribute onto the mesh.  This unevenness leads to holes in the pressed/shaped absorbent material which translates to a reject rate of ~1 out of every 20 diapers.

An EXAIR Ion Bar

The ideal solution in this case needed to eliminate the static within the chute to allow for proper distribution on the mesh below and proper material placement into the diapers.  An Ion Bar was originally desired by the customer, but material accumulation on the emitter points was a concern so this solution was removed from consideration.

An EXAIR Ion Air Cannon

An Ion Air Cannon, however, was able to provide the desired solution by mounting outside of the chute and feeding a low volume of ionized air to remove the static.  The ionized airflow from the Ion Air Cannon is strong enough to permeate the full volume of the application, but low enough to not disturb the absorbent material within the process. Using an Ion Air Cannon allowed this manufacturer to eliminate defects and wasted materials, increase their throughput, and improve the quality of their products.  Defects dropped from 1/20 diapers to less than 1/1000.

If you have a similar application or similar needs, contact an EXAIR Application Engineer.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Calibration – Keep Your Meters True

EXAIR offers meters to measure the level of physical parameters such as sound and static. Each meter has sensitive electrical circuitry and a periodic calibration is recommended to ensure the meter readings are tried and true.

The model 9104 Digital Sound Level Meter is an easy to use instrument that measures and monitors the sound level pressure in a wide variety of industrial environments. The source of loud noises can be quickly identified so that corrective measures can be taken to keep sound levels at or below OSHA maximum allowable exposure limits.

The sound meter comes from the factory with an NIST (National Institute of Standards and Technology) certificate of accuracy and calibration.  As a good practice, EXAIR recommends a yearly calibration of the instrument, and we offer a service that calibrates the unit to the same NIST standards and provide a written report of the calibration.

The model 7905 Static Meter allows easy one-hand static measurements.  It is useful in both locating sources of high static charge and checking the reduction of static after treatment with an EXAIR Static Elimination product.  The unit is sensitive and responsive, and indicates the the surface polarity of objects up to +/- 20 kV when measured from 1″ away.

It is also recommended that the Static Meter be calibrated on a yearly basis.  EXAIR offers (3) levels of calibration service.  The first two provide calibration in accordance with MIL Standards using accepted procedures and standards traceable to NIST.  The third calibration service conforms to the same Mil Standard, as well as ISO/IEC standards.

Annual calibration service of your EXAIR Digital Sound and Static Meter, along with proper care and storage, will keep your meter performing tried and true for many years, providing accurate and useful measurements.

To initiate a calibration service, give us a call and an Application Engineer will issue an Returned Good number, and provide instructions on how to ship the meter to EXAIR.

If you have questions regarding calibration services for your meters or would like to talk about any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Ion Air Jet Keeps Laser Scanner Lens Clean, Eliminates False Reads

An automobile manufacturer was looking for a solution to keep their laser scanner lens clean in their body welding process. The Automatic Guided Vehicles or “AGV’s” are equipped with a laser safety scanner mounted on the front and back of each vehicle, used to detect any foreign objects in it’s travel path. The scanners are fitted with a polycarbonate protective lens and as the vehicles travel through the system, the lens can build up a static charge, attracting airborne dust and particulate, which results in false readings, shutting down the line.

The current cleaning method involves an operator using a microfiber cloth to manually wipe the lenses clean, and while this does work, with the scanners being mounted roughly 4″ above the floor, this poses some ergonomic concerns for their workers. The customer found EXAIR after looking on the internet for static elimination products and it turns out, they are currently using several of our products in their facility, but he was unsure which product would be suit their needs so he reached out for assistance.

After further reviewing the application with the customer, they explained that each vehicle makes several “scheduled” stops along the route and one of these areas would be selected as the install point. I suggested the customer use (2) of our Ion Air Jet Kits, to clean the lenses. The Ion Air Jet produces a high volume of ionized airflow that can be focused right at the lenses to eliminate the static charge and carry the fines away. The kit includes a filter separator which is going to remove any condensate and/or dirt in the air supply, as well as a pressure regulator. The pressure regulator will allow them to easily adjust the supply pressure to control the outlet flow and velocity so they don’t disrupt other areas in the process.

Additionally, I suggested they use (2) of our EFC – Electronic Flow Control, which features a timing controlled (0.10 seconds to 120 hours) photoelectric sensor as a means to control air usage. As the vehicle enters the blow off area, the sensor will “see” the vehicle, signaling the solenoid valve to open the air line to the jet to blow off the lens. As the vehicle then exits the area, the sensor would again send a signal to close the air supply, so compressed air is only used when needed, reducing operating cost and further automating the process.

8494
Ion Air Jet Kit, Model # 8494 – includes the Ion Air Jet, Power Supply, Filter and Regulator

If you are experiencing static issues in your process or to see how we might be able to help with your automated system, contact an application engineer for assistance.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

 

Solving Static Problems with an Ion Point

ipcutout_559x
An Ion Point can provide static elimination with a small footprint and easy installation

I came into the office today to find an interesting application in my inbox.  A small plastic parts manufacturer was facing a problem when sealing their items inside of plastic bags.  The problem arose from an inability to properly place a small strip of glue on the bags, resulting in unwanted glue on the parts and, at times, the exterior of the bags.  What should have been a small strip of glue ended up as a random spread of adhesive due to a static charge on the plastic bags. So, they contacted EXAIR for a static solution.

In this application the first important parameter to check was the type of glue in use.  Some glues are flammable and the vapors from them can be potentially ignitable, so making sure there was no risk for explosion was our first priority as our products are not recommended for use in potentially flammable or combustible applications.

After determining there was no risk for explosion, we then considered the application in more detail.  The static solution needed to be small, effective, and there was an important aspect for this application – the solution could not have any airflow.  The parts which are placed into these bags have low weights, and even a small airflow could remove them from the bags.  So, we needed an airless solution that was compact and effective.

The solution was an Ion Point.

An Ion Point creates a small ionizing “zone” of approximately 2” x 2” (51mm x 51mm) without any airflow.  At this distance, the static elimination from an Ion Point can dissipate a 5kV charge in 0.24 seconds.  The small footprint and airless operation of the Ion Point made it an ideal candidate for this application.

By installing an Ion Point between the bag opener and the glue applicator, the static charge was eliminated and the process disturbance was removed.  We were able to solve this problem, offering a readily available solution (from stock) that fit the specifics of the application.

As the temperature and humidity in the northern hemisphere drop, static problems become more prevalent.  (Click here or here to read about why this happens.)  If static problems arise in your facilities, consider an EXAIR solution.  We’re available to discuss applications and solutions M-F, 8-5 EST.

 

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE