Custom Air Amplifiers To Meet Most Any Requirement

When I think of “special” in regard to Air Amplifiers, I’m more inclined to think of the applications they can be used in. I mean, the Air Amplifier itself is about as straight-forward as an engineered compressed air product can be:

Air Amplifiers use the Coanda Effect to generate high flow with low consumption.

Considering the simplicity of the product itself, they can be used for a large variety of “typical” applications:

  • Cooling
  • Drying
  • Cleaning
  • Ventilation
  • Fume Exhausting
  • Dust Collection

There are no shortage of “special” applications either.  They’re used successfully in Air Operated Conveyance applications (when the stronger vacuum head of a Line Vac isn’t required) and we’ve even got a customer who uses one instead of an E-Vac Vacuum Generator for a “pick & place” operation…they’re picking up small, porous fiber discs (sort of like a coffee filter) one at a time, and the E-Vac wanted to pick up a good part of the whole stack, no matter how low they turned the pressure.  And of course, I can’t think of anything more special about Air Amplifiers than this:

You have to read it to believe it.  Follow the link and click on “Case Study: Roaring Banana Breath”

With fifteen distinct models to choose from in a range of sizes (3/4″ to 8″,) materials (aluminum or Stainless Steel) and even a High Temperature model that’s rated to 700°F (374°C), we’ve still made a fair number of Custom Air Amplifiers too…thirty-four, to be exact, as of this writing.

I won’t bore you with all the details – I can’t, actually, because some of them are proprietary* – but here are some “regular” examples of “special” accommodations:

  • Connections: EXAIR Air Amplifiers have smooth bores on the inlet & outlet plenums that you can hose clamp a hose (or round duct) to if you need to get air flow from, or to, one place or another.  Sometimes, though, they’re going in to an existing system, so we’ve made them with flanges (150#RF and Sanitary Tri-Clamp, for example) or threads (NPT or BSPP.)  If you want to use something other than a standard hose or duct line, we can help.
  • Material of construction: Our durable, lightweight aluminum Super & Adjustable Air Amplifiers are just fine an awful lot of the time.  Our type 303 Stainless Steel Adjustable Air Amplifiers will hold up to heat and corrosives.  We’ve also in PTFE (Teflon™) as well as a range of metal alloys to meet specific corrosion or wear conditions.  If your environment calls for a little something extra, we can help.
  • Assembly: Super Air Amplifiers are fitted with a stock shim that gives you published performance.  We’ve got other thicknesses, though, if you need more (or less) flow, though.  Adjustable Air Amplifiers are, well, adjustable…you just thread the plug in/out of the body until you get the results you want.  Sometimes the user knows what shim they want in a Super Air Amplifier, or what gap their Adjustable Air Amplifier needs to be set to, and we can assemble it accordingly.  If you have a ‘tried-and-true’ performance setting and want it met right out of the box, we can help.
  • Assembly, part 2: Good engineering practices call for lubrication on O-rings and threaded connections, and we use high quality, general purpose compounds when assembling our Air Amplifiers.  These are detrimental, however, in certain situations (silicone exclusion areas, I’m looking at you.) If certain chemicals or compounds are prohibited by your application, we can help.

*Let’s say you’ve done the “heavy lifting” to call out one (or more) of these special design features.  If we make a custom product (and that’s not just Air Amplifiers, by the way) using directions based on your time and labor, we’ll treat that product as proprietary to you, and you alone.

EXAIR has 208 catalog pages worth of Intelligent Compressed Air Products on the shelf…8 of those pages are our Air Amplifiers.  If you want to talk about customizing one to meet your needs, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

About Double Acting Reciprocating Air Compressors

My colleague, Lee Evans, wrote a blog “About Single Acting Reciprocating Compressors”, and I wanted to extend that conversation to a more efficient relative, the double acting reciprocating compressor.   As you see in the chart below, this type of compressor falls within the same family under the category of positive displacement compressors.

Compressor Types

Positive displacement compressors increase air pressure by reducing air volume within a confined space.  The reciprocating type of air compressor uses a motor that turns a crank which pushes a piston inside a cylinder; like the engine in your car.  In a basic cycle, an intake valve opens to allow the ambient air into the cylinder, the gas gets trapped, and once it is compressed by the piston, the exhaust valve opens to discharge the compressed volume into a tank.  This method of compression happens for both the single and double acting reciprocating compressors.  With a single acting compressor, the air is compressed only on the up-stroke of the piston inside the cylinder.  The double acting compressor compresses the air on both the up-stroke and the down-stroke of the piston, doubling the capacity of a given cylinder size.  This “double” compression cycle is what makes this type of air compressor very efficient.  A single acting compressor will have an operating efficiency between 22 – 24 kW/100 cfm of air while the double acting compressor has an operating efficiency between 15 – 16 kW/100 cfm.  Therefore, electricity cost is less with a double-acting reciprocating air compressor to make the same amount of compressed air.

To explore the internals a bit closer, the mechanical linkage used to move the piston is slightly different as well as the additional intake and exhaust valves.   Instead of the connecting rod being attached directly to the piston as seen inside a single acting compressor, a crosshead is added between the compression piston and the connecting rod (view picture below).  The rod that connects the crosshead to the compression piston can be sealed to keep the cylinder completely encapsulated.  For every rotation of the electric motor, the air is being compressed twice.  With the added heat of compression, the double acting compressors are generally water-cooled.  Also, with the added mechanism between the crank and the piston, the rotational speeds are typically less.  Because of the larger size, water jackets, and added parts, the initial cost is more expensive than the single acting compressor, but the efficiency is much higher.

Double Acting Reciprocating Air Compressor

Double acting compressors are generally designed for rugged 100% continuous operations.  Dubbed the work horse of the compressor family, they are also known for their long service life.  They are commonly used in high pressure services in multistage styles and can come in lubricated and non-lubricated configurations.   With the dual compression, slow speed and inter-cooling, it makes this type of air compressor very proficient in making compressed air.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

Photos:  used from Compressed Air Challenge Handbook

EXAIR Line Vac Promotion Thru October 2017!

EXAIR will be giving away a free 2” Super Air Nozzle with the purchase of any EXAIR Line Vac from September 1st through October 31st, 2017.  This special promotion will apply to all versions of Line Vac orders, whether aluminum, stainless steel, heavy duty, threaded/non-threaded, or 316SS sanitary flanged.  Order within the promotional period and receive the free model 1122, a value of $65.00! The 2″ Flat Super Air Nozzle is more durable than plastic flat nozzles, operates at lower noise levels and produces a powerful blast of compressed air in a laminar sheet.

EXAIR’s Line Vac family

Line Vacs provide a fast, easy way to pneumatically transfer dry materials from one location to another.  They eliminate the need to have personnel manually transferring materials via bag, super sac, or bucket-and-ladder setups.  Doing so reduces worker fatigue and allows conveyance to occur simultaneously with other process operations.

Line Vac removing trimmed scrap from label making application

What kind of an impact can this have?  Here’s a link to a recent blog post where an EXAIR Line Vac saved the end user from having to shut down their conveyor to allow cleaning of spilled material underneath.  And here’s a link to an application using Line Vacs to empty and refill a large tank full of desiccant.  And here’s a link to an application where we customized a Line Vac for conveyance of dog bedding material.  You get the idea…

Depending on application parameters such as bulk density of the material (lbs/ft³ or kg/m³), conveyance height/distance, and required conveyance rate, we can size a Line Vac properly through the support of our Application Engineers who have years of experience working with these products and their implementation into industrial solutions.

The EXAIR Line Vac Promotion – now through October 31st

We’re here to help you find a pneumatic conveyance solution for your application, and earn a free nozzle in the process.  Contact our Application Engineers for assistance today.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Finding Leaks and Saving Money with the Ultrasonic Leak Detector

Locate costly leaks in your compressed air system!  Sounds like the right thing to do.

The EXAIR Ultrasonic Leak Detector is a hand-held, high quality instrument that is used to locate costly leaks in a compressed air system.

Ultrasonic sound is the term applied to sound that is above the frequencies of normal human hearing capacity.  This typically begins at sounds over 20,000 Hz in frequency.  The Ultrasonic Leak Detector can detect sounds in this upper range and convert them to a range that is audible to people.

When a leak is present, the compressed air moves from the high pressure condition through the opening to the low pressure environment.  As the air passes through the opening, it speeds up and becomes turbulent in flow, and generates ultrasonic sound components. Because the audible sound of a small leak is very low and quiet, it typically gets drowned out by by surrounding plant noises, making leak detection by the human ear difficult if not impossible.

ULD_Pr

Detecting a Leak with the Ultrasonic Leak Detector

By using the Ultrasonic Leak Detector, the background noise can be filtered out and the ultrasonic noises can be detected, thus locating a leakage in the compressed air system. There are (3) sensitivity settings, x1, x10, and x100 along with an on/off thumb-wheel for fine sensitivity.  The unit comes with a parabola and tubular extension for added flexibility.

ULD_Kit

Model 9061 – Ultrasonic Leak Detector and Included Accessories

Finding just one small leak can pay for the unit-

A small leak equivalent to a 1/16″ diameter hole will leak approx 3.8 SCFM at 80 PSIG of line pressure.  Using a reasonable average cost of $0.25 per 1000 SCF of compressed air generation, we can calculate the cost of the leak as follows-

Capture

It is easy to see that utilizing the Ultrasonic Leak Detector, and identifying and fixing leaks is the right thing to do.  It is possible to find and fix enough leaks that a new compressor purchase can be avoided or an auxiliary back-up is not needed any more.

If you have questions regarding the Ultrasonic Leak Detector, or would like to talk about any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

EXAIR Provides Same Day Solutions For Customers In Need

Solving customer problems by shipping product the same day is a common occurrence at EXAIR. Here is another example.

 

EXAIR Cabinet Cooler installed on a control panel in a distribution center for hygienic products.

As companies grow and add more personnel, the details of projects and solutions can get lost if not recorded well.  Newer employees may not have knowledge of solution specifics, and unknown details can be hard to discover, especially in larger organizations.  An example of this happened recently when one of our customers contacted me about the Cabinet Cooler shown in the image above.

The NEMA 12 Cabinet Cooler was working flawlessly and had been for some time.  As temperatures rose, however, other machines in this facility began to experience overheating conditions leading to machine downtime, decreased throughput, and increased stress on operations personnel.

One of the maintenance workers noticed that the cabinet with the EXAIR Cabinet Cooler was functioning properly, so they did a quick Google search of the product.  They were met with numerous postings about the theory of operation for Cabinet Coolers and Vortex Tubes, how-to videos for installation/thermostats/side mount kits, and our blog site with countless application solutions provided by our products.

Figuring they’d found the right place, they reached out to me via email and shared their story.  And, what they ultimately needed from me was help identifying which Cabinet Coolers they had on hand to mimic the solution in other, identical machines.

Another angle of the Cabinet Cooler in this application.

Thankfully they provided the image above, which shows a label near the compressed air inlet designating the compressed air consumption (at 100 PSIG).  (See below)

The critical piece of information we needed to determine the model number of this Cabinet Cooler (in the red circle).

Based on this label and the dimensions of the Cabinet Cooler, I was able to identify this as our model 4025 NEMA 12 Cabinet Cooler, which is part of the larger, complete system model 4325.  After providing the model number, price, and availability, this customer was able to order the needed Cabinet Coolers which were shipped the same day.

Shipping solutions from stock is an everyday thing here at EXAIR.  If you’re in need of a solution for cooling, cleaning, conveying, removing static, or coating contact an EXAIR Application Engineer.  We can help you solve your problem – TODAY!

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Methods Of Heat Transfer

“Nothing happens until something moves.”
-Albert Einstein

These five words are the foundation on which the science of physics is built upon. This statement not only applies to the things we can see, but to those we can’t…like heat transfer.

OK; technically, we CAN visually observe the EFFECTS of heat transfer…that’s called “reading a thermometer.” But the actual mechanism of heat transfer takes place at a molecular level, and concerns the rate of motion of those molecules: the higher the rate of molecular motion, the higher the heat of the material. Hence, the higher the rate of CHANGE of that molecular motion, the higher the heat transfer rate is.

All you need for heat transfer to occur is a difference in temperature between two materials. Contact, or even proximity, helps…but not always. More on that in a minute. And keeping at least one of the materials in motion can help maintain the temperature differential. We’ll unpack that a little more too.

Let’s start with the three ways that heat is transferred…what they are, and how they work:

Conduction

What it is: The transfer of heat between materials that are in physical contact with each other.

How it works: If you’ve ever touched a hot burner on a stove, you’ve successfully participated in the process of conduction heat transfer.

Convection

What it is: The transfer of heat through a fluid medium, enhanced by the motion of the fluid.

How it works: If you’ve ever boiled water in a pan on a hot stove burner, you’ve successfully participated, again, in the process of conduction heat transfer (as the burner heats the pan) AND convection (as the heated water in the bottom of the pan both transfers heat through its volume, and moves to the surface.)

Radiation

What it is: Remember what I said earlier about how you don’t always need contact or proximity for heat transfer? Well, this is it…the transfer of heat through empty space, via electromagnetic waves.

How it works: If you didn’t actually TOUCH the hot stove burner, but felt your hand getting hot as it hovered, then you’ve successfully participated in the process of radiation heat transfer. OK; it’s a little convection too, since the air between the burner and your hand was also transferring some of that heat. The best example of STRICTLY radiation heat transfer I can think of is the sun’s rays…they literally pass through 93 million miles of empty space, and make it quite warm on a nice sunny day here on Earth.

Regardless of how material, or an object, or a system receives heat, engineered compressed air products can be used to efficiently and effectively remove that heat.  For the record, they employ the principles of both conduction and convection.  If you’d like to discuss a heat transfer application, and the way(s) that an EXAIR product can work in it, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Air Amplifiers – What is an Amplification Ratio?

On Friday my colleague, Russ, blogged about the Super Air Amplifier (see that BLOG here, including a video demo)  In discussing the Air Amplifiers, the topic of amplification was mentioned. Today, I’d like to expand a bit further the amplification aspect of the Air Amplifier performance.

As the name of the device implies, the compressed air used by the Air Amplifier is added to, and thus ‘amplified’, the total output flow of the unit. Depending on the size and type of Air Amplifier, the amplification ratio starts at 12:1 and goes up to 25:1, with the ratio being the output flow to the compressed air usage.

AirAmplifiers.jpg

Super Air Amplifier and Adjustable Air Amplifier

EXAIR offers (2) types- the Super Air Amplifier and the Adjustable Air Amplifier.  The Super Air Amplifier uses a patented shim technology to maintain a precise gap, which controls the compressed air flow and expansion through the unit.  As the expanded air flows along the Coanda profile, a low pressure area is created at the center which induces a high volume flow of surrounding air into the primary air-stream.  The combined flow of primary and surrounding air exhausts from the Air Amplifier in a high volume, high velocity flow.  The larger diameter units have a greater cross sectional area with larger low pressure areas, resulting in greater amplification ratios.

The Below table shows the amplification ratios.

SuperAirAmplifierPerformance

The Adjustable Air Amplifier does not use a shim, but rather has an infinitely adjustable gap, allowing for fine adjustment of performance.  Force and flow is changed by turning the exhaust end to adjust the gap, and is then locked into place. The method of the amplification is the same as for the Super Air Amplifier, and the amplification ratios are similar and shown below.

AdjustableAirAmplifierPerformance

The Super Air Amplifiers and Adjustable Air Amplifiers are ideal for use in applications and processes that require cooling, drying and/or cleaning of parts, or the ventilation of confined areas or weld smoke or the exhausting of tank fumes.

If you have questions regarding the Air Amplifier, or would like to talk about any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

%d bloggers like this: